These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

27 related articles for article (PubMed ID: 28866200)

  • 1. Incorporation of quantum dots in silk biomaterials for fluorescence imaging.
    Zheng ZZ; Liu M; Guo SZ; Wu JB; Lu DS; Li G; Liu SS; Wang XQ; Kaplan DL
    J Mater Chem B; 2015 Aug; 3(31):6509-6519. PubMed ID: 26257913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Preparation of pH-Responsive Microsphere Fibers and Their Controlled Drug Release Properties.
    Wang N; Wei Y; Hu Y; Sun X; Wang X
    Molecules; 2023 Dec; 29(1):. PubMed ID: 38202775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Silk-Vaterite Microsphere Systems as Drug Carriers with pH-responsive Release Behavior.
    Liu SS; Liu LJ; Xiao LY; Lu Q; Zhu HS; Kaplan DL
    J Mater Chem B; 2015 Nov; 3(42):8314-8320. PubMed ID: 26693020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-Clotting of Platelet-Rich Plasma Upon Loading in Hydrogel Microspheres Leads to Prolonged Protein Release and Slower Microsphere Degradation.
    Choi MH; Blanco A; Stealey S; Duan X; Case N; Sell SA; Rai MF; Zustiak SP
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32751604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ protein-templated porous protein-hydroxylapatite nanocomposite microspheres for pH-dependent sustained anticancer drug release.
    Shuai Y; Yang S; Li C; Zhu L; Mao C; Yang M
    J Mater Chem B; 2017 Jun; 5(21):3945-3954. PubMed ID: 29152304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Bioprinting of Self-Standing Silk-Based Bioink.
    Zheng Z; Wu J; Liu M; Wang H; Li C; Rodriguez MJ; Li G; Wang X; Kaplan DL
    Adv Healthc Mater; 2018 Mar; 7(6):e1701026. PubMed ID: 29292585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.
    McGill M; Coburn JM; Partlow BP; Mu X; Kaplan DL
    Acta Biomater; 2017 Nov; 63():76-84. PubMed ID: 28919509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Woven Vascular Stent-Grafts with Surface Modification of Silk Fibroin-Based Paclitaxel/Metformin Microspheres.
    Liang M; Li F; Wang Y; Chen H; Tian J; Zhao Z; Schneider KH; Li G
    Bioengineering (Basel); 2023 Mar; 10(4):. PubMed ID: 37106586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Employing hydrogels in tissue engineering approaches to boost conventional cancer-based research and therapies.
    Esmaeili J; Barati A; Ai J; Nooshabadi VT; Mirzaei Z
    RSC Adv; 2021 Mar; 11(18):10646-10669. PubMed ID: 35423538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Biopolymer-Based Materials in Obstetrics and Gynecology Applications: A Review.
    Jummaat F; Yahya EB; Khalil H P S A; Adnan AS; Alqadhi AM; Abdullah CK; A K AS; Olaiya NG; Abdat M
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33672526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun Silk-Boron Nitride Nanofibers with Tunable Structure and Properties.
    Xue Y; Hu X
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32403370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microporous drug-eluting large silk particles through cryo-granulation.
    Rodionov IA; Abdullah N; Kaplan DL
    Adv Eng Mater; 2019 Jul; 21(7):. PubMed ID: 31892840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dexamethasone-loaded injectable silk-polyethylene glycol hydrogel alleviates cisplatin-induced ototoxicity.
    Chen Y; Gu J; Liu J; Tong L; Shi F; Wang X; Wang X; Yu D; Wu H
    Int J Nanomedicine; 2019; 14():4211-4227. PubMed ID: 31239676
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of pH on polyethylene glycol (PEG)-induced silk microsphere formation for drug delivery.
    Wu J; Xie X; Zheng Z; Li G; Wang X; Wang Y
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():549-557. PubMed ID: 28866200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of silk microsphere formation using polyethylene glycol (PEG).
    Wu J; Zheng Z; Li G; Kaplan DL; Wang X
    Acta Biomater; 2016 Jul; 39():156-168. PubMed ID: 27181879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raloxifene-/raloxifene-poly(ethylene glycol) conjugate-loaded microspheres: A novel strategy for drug delivery to bone forming cells.
    Kavas A; Keskin D; Altunbaş K; Tezcaner A
    Int J Pharm; 2016 Aug; 510(1):168-83. PubMed ID: 27343363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of octreotide release from silk fibroin microspheres.
    Gong H; Wang J; Zhang J; Wu J; Zheng Z; Xie X; Kaplan DL; Li G; Wang X
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():820-828. PubMed ID: 31147054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silk coatings on PLGA and alginate microspheres for protein delivery.
    Wang X; Wenk E; Hu X; Castro GR; Meinel L; Wang X; Li C; Merkle H; Kaplan DL
    Biomaterials; 2007 Oct; 28(28):4161-9. PubMed ID: 17583788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of bovine serum albumin complexed with PEG-poly(L-histidine) diblock copolymer in PLGA microspheres.
    Kim JH; Taluja A; Knutson K; Han Bae Y
    J Control Release; 2005 Dec; 109(1-3):86-100. PubMed ID: 16266769
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.