These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 28866383)

  • 21. Is it time to think about the sodium glucose co-transporter 2 sympathetically?
    Elliott RH; Matthews VB; Rudnicka C; Schlaich MP
    Nephrology (Carlton); 2016 Apr; 21(4):286-94. PubMed ID: 26369359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Familial renal glycosuria and modifications of glucose renal excretion.
    Prié D
    Diabetes Metab; 2014 Dec; 40(6 Suppl 1):S12-6. PubMed ID: 25554066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the renal sympathetic nerve in renal glucose metabolism during the development of type 2 diabetes in rats.
    Rafiq K; Fujisawa Y; Sherajee SJ; Rahman A; Sufiun A; Kobori H; Koepsell H; Mogi M; Horiuchi M; Nishiyama A
    Diabetologia; 2015 Dec; 58(12):2885-98. PubMed ID: 26450431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A phenomenological-based semi-physical model of the kidneys and its role in glucose metabolism.
    Lema-Perez L; Builes-Montaño CE; Alvarez H
    J Theor Biol; 2021 Jan; 508():110489. PubMed ID: 32956669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Renal glucose reabsorption inhibitors to treat diabetes.
    Bailey CJ
    Trends Pharmacol Sci; 2011 Feb; 32(2):63-71. PubMed ID: 21211857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glucose Metabolism in the Kidney: Neurohormonal Activation and Heart Failure Development.
    Gronda E; Jessup M; Iacoviello M; Palazzuoli A; Napoli C
    J Am Heart Assoc; 2020 Dec; 9(23):e018889. PubMed ID: 33190567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual Regulation of Gluconeogenesis by Insulin and Glucose in the Proximal Tubules of the Kidney.
    Sasaki M; Sasako T; Kubota N; Sakurai Y; Takamoto I; Kubota T; Inagi R; Seki G; Goto M; Ueki K; Nangaku M; Jomori T; Kadowaki T
    Diabetes; 2017 Sep; 66(9):2339-2350. PubMed ID: 28630133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms for abnormal postprandial glucose metabolism in type 2 diabetes.
    Woerle HJ; Szoke E; Meyer C; Dostou JM; Wittlin SD; Gosmanov NR; Welle SL; Gerich JE
    Am J Physiol Endocrinol Metab; 2006 Jan; 290(1):E67-E77. PubMed ID: 16105859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sodium-Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport: From Bench to Bedside.
    Mudaliar S; Polidori D; Zambrowicz B; Henry RR
    Diabetes Care; 2015 Dec; 38(12):2344-53. PubMed ID: 26604280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia.
    DeFronzo RA; Davidson JA; Del Prato S
    Diabetes Obes Metab; 2012 Jan; 14(1):5-14. PubMed ID: 21955459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SGLT2 inhibitors in the treatment of type 2 diabetes.
    Hasan FM; Alsahli M; Gerich JE
    Diabetes Res Clin Pract; 2014 Jun; 104(3):297-322. PubMed ID: 24735709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences.
    Gallo LA; Wright EM; Vallon V
    Diab Vasc Dis Res; 2015 Mar; 12(2):78-89. PubMed ID: 25616707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Renal gluconeogenesis: its importance in human glucose homeostasis.
    Gerich JE; Meyer C; Woerle HJ; Stumvoll M
    Diabetes Care; 2001 Feb; 24(2):382-91. PubMed ID: 11213896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Role of the Kidney and SGLT2 Inhibitors in Type 2 Diabetes.
    Katz PM; Leiter LA
    Can J Diabetes; 2015 Dec; 39 Suppl 5():S167-75. PubMed ID: 26654860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sodium-glucose co-transporter (SGLT)2 and SGLT1 renal expression in patients with type 2 diabetes.
    Solini A; Rossi C; Mazzanti CM; Proietti A; Koepsell H; Ferrannini E
    Diabetes Obes Metab; 2017 Sep; 19(9):1289-1294. PubMed ID: 28419670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Canagliflozin, a sodium glucose co-transporter 2 inhibitor, reduces post-meal glucose excursion in patients with type 2 diabetes by a non-renal mechanism: results of a randomized trial.
    Stein P; Berg JK; Morrow L; Polidori D; Artis E; Rusch S; Vaccaro N; Devineni D
    Metabolism; 2014 Oct; 63(10):1296-303. PubMed ID: 25110280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sodium-Glucose Co-transporters and Their Inhibition: Clinical Physiology.
    Ferrannini E
    Cell Metab; 2017 Jul; 26(1):27-38. PubMed ID: 28506519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of the Kidney in Type 2 Diabetes and Mechanism of Action of Sodium Glucose Cotransporter-2 Inhibitors.
    Mintz ML
    J Fam Pract; 2016 Dec; 65(12 Suppl):. PubMed ID: 28149983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular signaling mechanisms of renal gluconeogenesis in nondiabetic and diabetic conditions.
    Swe MT; Pongchaidecha A; Chatsudthipong V; Chattipakorn N; Lungkaphin A
    J Cell Physiol; 2019 Jun; 234(6):8134-8151. PubMed ID: 30370538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ipragliflozin and other sodium-glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data.
    Kurosaki E; Ogasawara H
    Pharmacol Ther; 2013 Jul; 139(1):51-9. PubMed ID: 23563279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.