These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 28866599)
1. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics. Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599 [TBL] [Abstract][Full Text] [Related]
2. Continuous Separation of White Blood Cells From Whole Blood Using Viscoelastic Effects. Tan JKS; Park SY; Leo HL; Kim S IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1431-1437. PubMed ID: 28981424 [TBL] [Abstract][Full Text] [Related]
3. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. VanDelinder V; Groisman A Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639 [TBL] [Abstract][Full Text] [Related]
5. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes. Li X; Chen W; Liu G; Lu W; Fu J Lab Chip; 2014 Jul; 14(14):2565-75. PubMed ID: 24895109 [TBL] [Abstract][Full Text] [Related]
6. A low-cost and high-throughput benchtop cell sorter for isolating white blood cells from whole blood. Lu X; Tayebi M; Ai Y Electrophoresis; 2021 Nov; 42(21-22):2281-2292. PubMed ID: 34010478 [TBL] [Abstract][Full Text] [Related]
7. A microfluidic device for continuous white blood cell separation and lysis from whole blood. Kim M; Mo Jung S; Lee KH; Jun Kang Y; Yang S Artif Organs; 2010 Nov; 34(11):996-1002. PubMed ID: 21092042 [TBL] [Abstract][Full Text] [Related]
8. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices. Xiang N; Ni Z Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099 [TBL] [Abstract][Full Text] [Related]
9. One-Step Microfluidic Purification of White Blood Cells from Whole Blood for Immunophenotyping. Kim B; Kim KH; Chang Y; Shin S; Shin EC; Choi S Anal Chem; 2019 Oct; 91(20):13230-13236. PubMed ID: 31556985 [TBL] [Abstract][Full Text] [Related]
10. Micropump integrated white blood cell separation platform for detection of chronic granulomatous disease. Mane S; Behera A; Hemadri V; Bhand S; Tripathi S Mikrochim Acta; 2024 May; 191(5):295. PubMed ID: 38700804 [TBL] [Abstract][Full Text] [Related]
11. High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section. Mehran A; Rostami P; Saidi MS; Firoozabadi B; Kashaninejad N Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821622 [TBL] [Abstract][Full Text] [Related]
12. A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples. Ebrahimi S; Alishiri M; Pishbin E; Afjoul H; Shamloo A J Chromatogr A; 2023 Aug; 1705():464200. PubMed ID: 37429078 [TBL] [Abstract][Full Text] [Related]
14. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation. Rafeie M; Zhang J; Asadnia M; Li W; Warkiani ME Lab Chip; 2016 Aug; 16(15):2791-802. PubMed ID: 27377196 [TBL] [Abstract][Full Text] [Related]
15. Size-tuneable isolation of cancer cells using stretchable inertial microfluidics. Fallahi H; Yadav S; Phan HP; Ta H; Zhang J; Nguyen NT Lab Chip; 2021 May; 21(10):2008-2018. PubMed ID: 34008666 [TBL] [Abstract][Full Text] [Related]
16. Continuous CTC separation through a DEP-based contraction-expansion inertial microfluidic channel. Islam MS; Chen X Biotechnol Prog; 2023; 39(4):e3341. PubMed ID: 36970770 [TBL] [Abstract][Full Text] [Related]
17. A polymer-film inertial microfluidic sorter fabricated by jigsaw puzzle method for precise size-based cell separation. Zhu Z; Wu D; Li S; Han Y; Xiang N; Wang C; Ni Z Anal Chim Acta; 2021 Jan; 1143():306-314. PubMed ID: 33384126 [TBL] [Abstract][Full Text] [Related]
18. High-throughput rare cell separation from blood samples using steric hindrance and inertial microfluidics. Shen S; Ma C; Zhao L; Wang Y; Wang JC; Xu J; Li T; Pang L; Wang J Lab Chip; 2014 Jul; 14(14):2525-38. PubMed ID: 24862501 [TBL] [Abstract][Full Text] [Related]
19. Numerical study of dielectrophoresis-modified inertial migration for overlapping sized cell separation. Khan M; Chen X Electrophoresis; 2022 Apr; 43(7-8):879-891. PubMed ID: 35015306 [TBL] [Abstract][Full Text] [Related]
20. Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement. Xiang N; Wang J; Li Q; Han Y; Huang D; Ni Z Anal Chem; 2019 Aug; 91(15):10328-10334. PubMed ID: 31304740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]