These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 28866599)

  • 21. Microfluidic platform for negative enrichment of circulating tumor cells.
    Sajay BN; Chang CP; Ahmad H; Khuntontong P; Wong CC; Wang Z; Puiu PD; Soo R; Rahman AR
    Biomed Microdevices; 2014 Aug; 16(4):537-48. PubMed ID: 24668439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Separation of CTCs from WBCs using DEP-assisted inertial manipulation: A numerical study.
    Uddin MR; Sarowar MT; Chen X
    Electrophoresis; 2023 Dec; 44(23):1781-1794. PubMed ID: 37753944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid and precise tumor cell separation using the combination of size-dependent inertial and size-independent magnetic methods.
    Huang D; Xiang N
    Lab Chip; 2021 Apr; 21(7):1409-1417. PubMed ID: 33605279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zigzag microchannel for rigid inertial separation and enrichment (Z-RISE) of cells and particles.
    Razavi Bazaz S; Mihandust A; Salomon R; Joushani HAN; Li W; A Amiri H; Mirakhorli F; Zhand S; Shrestha J; Miansari M; Thierry B; Jin D; Ebrahimi Warkiani M
    Lab Chip; 2022 Oct; 22(21):4093-4109. PubMed ID: 36102894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fully-automated and field-deployable blood leukocyte separation platform using multi-dimensional double spiral (MDDS) inertial microfluidics.
    Jeon H; Jundi B; Choi K; Ryu H; Levy BD; Lim G; Han J
    Lab Chip; 2020 Sep; 20(19):3612-3624. PubMed ID: 32990714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Size-dependent enrichment of leukocytes from undiluted whole blood using shear-induced diffusion.
    Zhou J; Papautsky I
    Lab Chip; 2019 Oct; 19(20):3416-3426. PubMed ID: 31490514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Throughput Isolation of Circulating Tumor Cells Using Cascaded Inertial Focusing Microfluidic Channel.
    Abdulla A; Liu W; Gholamipour-Shirazi A; Sun J; Ding X
    Anal Chem; 2018 Apr; 90(7):4397-4405. PubMed ID: 29537252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuning particle inertial separation in sinusoidal channels by embedding periodic obstacle microstructures.
    Cha H; Fallahi H; Dai Y; Yadav S; Hettiarachchi S; McNamee A; An H; Xiang N; Nguyen NT; Zhang J
    Lab Chip; 2022 Jul; 22(15):2789-2800. PubMed ID: 35587546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
    Kim U; Oh B; Ahn J; Lee S; Cho Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous scalable blood filtration device using inertial microfluidics.
    Mach AJ; Di Carlo D
    Biotechnol Bioeng; 2010 Oct; 107(2):302-11. PubMed ID: 20589838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO; Pinho D; Faustino V; Lima R
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
    Lee MG; Shin JH; Bae CY; Choi S; Park JK
    Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A flyover style microfluidic chip for highly purified magnetic cell separation.
    Lin S; Zhi X; Chen D; Xia F; Shen Y; Niu J; Huang S; Song J; Miao J; Cui D; Ding X
    Biosens Bioelectron; 2019 Mar; 129():175-181. PubMed ID: 30710755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of aspect ratio for complete separation in an inertial microfluidic channel.
    Zhou J; Giridhar PV; Kasper S; Papautsky I
    Lab Chip; 2013 May; 13(10):1919-29. PubMed ID: 23529341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cascaded elasto-inertial separation of malignant tumor cells from untreated malignant pleural and peritoneal effusions.
    Ni C; Wu D; Chen Y; Wang S; Xiang N
    Lab Chip; 2024 Feb; 24(4):697-706. PubMed ID: 38273802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-electrical powered continuous cell concentration for enumeration of residual white blood cells in WBC-depleted blood using a viscoelastic fluid.
    Nam J; Jang WS; Lim CS
    Talanta; 2019 May; 197():12-19. PubMed ID: 30771912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells.
    Wei YJ; Wei X; Zhang X; Wu CX; Cai JY; Chen ML; Wang JH
    Talanta; 2024 Jun; 273():125884. PubMed ID: 38508128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An integrated on-chip platform for negative enrichment of tumour cells.
    Bhuvanendran Nair Gourikutty S; Chang CP; Poenar DP
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Aug; 1028():153-164. PubMed ID: 27344255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.
    Wang X; Liedert C; Liedert R; Papautsky I
    Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.