These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 28866639)
1. Overexpression of miRNA-9 Generates Muscle Hypercontraction Through Translational Repression of Troponin-T in Katti P; Thimmaya D; Madan A; Nongthomba U G3 (Bethesda); 2017 Oct; 7(10):3521-3531. PubMed ID: 28866639 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of troponin T in Drosophila muscles causes a decrease in the levels of thin-filament proteins. Marco-Ferreres R; Arredondo JJ; Fraile B; Cervera M Biochem J; 2005 Feb; 386(Pt 1):145-52. PubMed ID: 15469415 [TBL] [Abstract][Full Text] [Related]
3. Aberrant splicing of an alternative exon in the Drosophila troponin-T gene affects flight muscle development. Nongthomba U; Ansari M; Thimmaiya D; Stark M; Sparrow J Genetics; 2007 Sep; 177(1):295-306. PubMed ID: 17603127 [TBL] [Abstract][Full Text] [Related]
4. Drosophila mir-9a regulates wing development via fine-tuning expression of the LIM only factor, dLMO. Biryukova I; Asmar J; Abdesselem H; Heitzler P Dev Biol; 2009 Mar; 327(2):487-96. PubMed ID: 19162004 [TBL] [Abstract][Full Text] [Related]
5. A cis-regulatory mutation in troponin-I of Drosophila reveals the importance of proper stoichiometry of structural proteins during muscle assembly. Firdaus H; Mohan J; Naz S; Arathi P; Ramesh SR; Nongthomba U Genetics; 2015 May; 200(1):149-65. PubMed ID: 25747460 [TBL] [Abstract][Full Text] [Related]
6. Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster. Nongthomba U; Cummins M; Clark S; Vigoreaux JO; Sparrow JC Genetics; 2003 May; 164(1):209-22. PubMed ID: 12750333 [TBL] [Abstract][Full Text] [Related]
7. The glutamic acid-rich-long C-terminal extension of troponin T has a critical role in insect muscle functions. Cao T; Sujkowski A; Cobb T; Wessells RJ; Jin JP J Biol Chem; 2020 Mar; 295(12):3794-3807. PubMed ID: 32024695 [TBL] [Abstract][Full Text] [Related]
8. Expression and function of the Drosophila ACT88F actin isoform is not restricted to the indirect flight muscles. Nongthomba U; Pasalodos-Sanchez S; Clark S; Clayton JD; Sparrow JC J Muscle Res Cell Motil; 2001; 22(2):111-9. PubMed ID: 11519734 [TBL] [Abstract][Full Text] [Related]
9. Troponin I is required for myofibrillogenesis and sarcomere formation in Drosophila flight muscle. Nongthomba U; Clark S; Cummins M; Ansari M; Stark M; Sparrow JC J Cell Sci; 2004 Apr; 117(Pt 9):1795-805. PubMed ID: 15075240 [TBL] [Abstract][Full Text] [Related]
10. Indirect flight muscles in Drosophila melanogaster as a tractable model to study muscle development and disease. Jawkar S; Nongthomba U Int J Dev Biol; 2020; 64(1-2-3):167-173. PubMed ID: 32659005 [TBL] [Abstract][Full Text] [Related]
11. Roles of the troponin isoforms during indirect flight muscle development in Drosophila. Singh SH; Kumar P; Ramachandra NB; Nongthomba U J Genet; 2014 Aug; 93(2):379-88. PubMed ID: 25189233 [TBL] [Abstract][Full Text] [Related]
12. MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Li Y; Wang F; Lee JA; Gao FB Genes Dev; 2006 Oct; 20(20):2793-805. PubMed ID: 17015424 [TBL] [Abstract][Full Text] [Related]
13. Epithelial microRNA-9a regulates dendrite growth through Fmi-Gq signaling in Drosophila sensory neurons. Wang Y; Wang H; Li X; Li Y Dev Neurobiol; 2016 Feb; 76(2):225-37. PubMed ID: 26016469 [TBL] [Abstract][Full Text] [Related]
15. MiR-219 represses expression of dFMR1 in Drosophila melanogaster. Wang C; Ge L; Wu J; Wang X; Yuan L Life Sci; 2019 Feb; 218():31-37. PubMed ID: 30528775 [TBL] [Abstract][Full Text] [Related]
16. Identification of miR-305, a microRNA that promotes aging, and its target mRNAs in Drosophila. Ueda M; Sato T; Ohkawa Y; Inoue YH Genes Cells; 2018 Feb; 23(2):80-93. PubMed ID: 29314553 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide microRNA screening reveals that the evolutionary conserved miR-9a regulates body growth by targeting sNPFR1/NPYR. Suh YS; Bhat S; Hong SH; Shin M; Bahk S; Cho KS; Kim SW; Lee KS; Kim YJ; Jones WD; Yu K Nat Commun; 2015 Jul; 6():7693. PubMed ID: 26138755 [TBL] [Abstract][Full Text] [Related]
18. miR-9a prevents apoptosis during wing development by repressing Drosophila LIM-only. Bejarano F; Smibert P; Lai EC Dev Biol; 2010 Feb; 338(1):63-73. PubMed ID: 19944676 [TBL] [Abstract][Full Text] [Related]
19. Site directed mutagenesis of Drosophila flightin disrupts phosphorylation and impairs flight muscle structure and mechanics. Barton B; Ayer G; Maughan DW; Vigoreaux JO J Muscle Res Cell Motil; 2007; 28(4-5):219-30. PubMed ID: 17912596 [TBL] [Abstract][Full Text] [Related]
20. Alternative splicing, muscle contraction and intraspecific variation: associations between troponin T transcripts, Ca(2+) sensitivity and the force and power output of dragonfly flight muscles during oscillatory contraction. Marden JH; Fitzhugh GH; Girgenrath M; Wolf MR; Girgenrath S J Exp Biol; 2001 Oct; 204(Pt 20):3457-70. PubMed ID: 11707496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]