BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 28866639)

  • 1. Overexpression of miRNA-9 Generates Muscle Hypercontraction Through Translational Repression of Troponin-T in
    Katti P; Thimmaya D; Madan A; Nongthomba U
    G3 (Bethesda); 2017 Oct; 7(10):3521-3531. PubMed ID: 28866639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of troponin T in Drosophila muscles causes a decrease in the levels of thin-filament proteins.
    Marco-Ferreres R; Arredondo JJ; Fraile B; Cervera M
    Biochem J; 2005 Feb; 386(Pt 1):145-52. PubMed ID: 15469415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberrant splicing of an alternative exon in the Drosophila troponin-T gene affects flight muscle development.
    Nongthomba U; Ansari M; Thimmaiya D; Stark M; Sparrow J
    Genetics; 2007 Sep; 177(1):295-306. PubMed ID: 17603127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila mir-9a regulates wing development via fine-tuning expression of the LIM only factor, dLMO.
    Biryukova I; Asmar J; Abdesselem H; Heitzler P
    Dev Biol; 2009 Mar; 327(2):487-96. PubMed ID: 19162004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cis-regulatory mutation in troponin-I of Drosophila reveals the importance of proper stoichiometry of structural proteins during muscle assembly.
    Firdaus H; Mohan J; Naz S; Arathi P; Ramesh SR; Nongthomba U
    Genetics; 2015 May; 200(1):149-65. PubMed ID: 25747460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster.
    Nongthomba U; Cummins M; Clark S; Vigoreaux JO; Sparrow JC
    Genetics; 2003 May; 164(1):209-22. PubMed ID: 12750333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The glutamic acid-rich-long C-terminal extension of troponin T has a critical role in insect muscle functions.
    Cao T; Sujkowski A; Cobb T; Wessells RJ; Jin JP
    J Biol Chem; 2020 Mar; 295(12):3794-3807. PubMed ID: 32024695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and function of the Drosophila ACT88F actin isoform is not restricted to the indirect flight muscles.
    Nongthomba U; Pasalodos-Sanchez S; Clark S; Clayton JD; Sparrow JC
    J Muscle Res Cell Motil; 2001; 22(2):111-9. PubMed ID: 11519734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Troponin I is required for myofibrillogenesis and sarcomere formation in Drosophila flight muscle.
    Nongthomba U; Clark S; Cummins M; Ansari M; Stark M; Sparrow JC
    J Cell Sci; 2004 Apr; 117(Pt 9):1795-805. PubMed ID: 15075240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect flight muscles in Drosophila melanogaster as a tractable model to study muscle development and disease.
    Jawkar S; Nongthomba U
    Int J Dev Biol; 2020; 64(1-2-3):167-173. PubMed ID: 32659005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of the troponin isoforms during indirect flight muscle development in Drosophila.
    Singh SH; Kumar P; Ramachandra NB; Nongthomba U
    J Genet; 2014 Aug; 93(2):379-88. PubMed ID: 25189233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila.
    Li Y; Wang F; Lee JA; Gao FB
    Genes Dev; 2006 Oct; 20(20):2793-805. PubMed ID: 17015424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epithelial microRNA-9a regulates dendrite growth through Fmi-Gq signaling in Drosophila sensory neurons.
    Wang Y; Wang H; Li X; Li Y
    Dev Neurobiol; 2016 Feb; 76(2):225-37. PubMed ID: 26016469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myosin light chain-2 mutation affects flight, wing beat frequency, and indirect flight muscle contraction kinetics in Drosophila.
    Warmke J; Yamakawa M; Molloy J; Falkenthal S; Maughan D
    J Cell Biol; 1992 Dec; 119(6):1523-39. PubMed ID: 1469046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MiR-219 represses expression of dFMR1 in Drosophila melanogaster.
    Wang C; Ge L; Wu J; Wang X; Yuan L
    Life Sci; 2019 Feb; 218():31-37. PubMed ID: 30528775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of miR-305, a microRNA that promotes aging, and its target mRNAs in Drosophila.
    Ueda M; Sato T; Ohkawa Y; Inoue YH
    Genes Cells; 2018 Feb; 23(2):80-93. PubMed ID: 29314553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide microRNA screening reveals that the evolutionary conserved miR-9a regulates body growth by targeting sNPFR1/NPYR.
    Suh YS; Bhat S; Hong SH; Shin M; Bahk S; Cho KS; Kim SW; Lee KS; Kim YJ; Jones WD; Yu K
    Nat Commun; 2015 Jul; 6():7693. PubMed ID: 26138755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR-9a prevents apoptosis during wing development by repressing Drosophila LIM-only.
    Bejarano F; Smibert P; Lai EC
    Dev Biol; 2010 Feb; 338(1):63-73. PubMed ID: 19944676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site directed mutagenesis of Drosophila flightin disrupts phosphorylation and impairs flight muscle structure and mechanics.
    Barton B; Ayer G; Maughan DW; Vigoreaux JO
    J Muscle Res Cell Motil; 2007; 28(4-5):219-30. PubMed ID: 17912596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative splicing, muscle contraction and intraspecific variation: associations between troponin T transcripts, Ca(2+) sensitivity and the force and power output of dragonfly flight muscles during oscillatory contraction.
    Marden JH; Fitzhugh GH; Girgenrath M; Wolf MR; Girgenrath S
    J Exp Biol; 2001 Oct; 204(Pt 20):3457-70. PubMed ID: 11707496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.