BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

564 related articles for article (PubMed ID: 28866772)

  • 1. The gymnastics of epigenomics in rice.
    Banerjee A; Roychoudhury A
    Plant Cell Rep; 2018 Jan; 37(1):25-49. PubMed ID: 28866772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rice epigenomics and epigenetics: challenges and opportunities.
    Chen X; Zhou DX
    Curr Opin Plant Biol; 2013 May; 16(2):164-9. PubMed ID: 23562565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding epigenomics based on the rice model.
    Lu Y; Zhou DX; Zhao Y
    Theor Appl Genet; 2020 May; 133(5):1345-1363. PubMed ID: 31897514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenomic modification and epigenetic regulation in rice.
    Zhao Y; Zhou DX
    J Genet Genomics; 2012 Jul; 39(7):307-15. PubMed ID: 22835977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa).
    Liu B; Wei G; Shi J; Jin J; Shen T; Ni T; Shen WH; Yu Y; Dong A
    New Phytol; 2016 Apr; 210(2):577-88. PubMed ID: 26639303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative analysis of reference epigenomes in 20 rice varieties.
    Zhao L; Xie L; Zhang Q; Ouyang W; Deng L; Guan P; Ma M; Li Y; Zhang Y; Xiao Q; Zhang J; Li H; Wang S; Man J; Cao Z; Zhang Q; Zhang Q; Li G; Li X
    Nat Commun; 2020 May; 11(1):2658. PubMed ID: 32461553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetics and Epigenomics of Plants.
    Yadav CB; Pandey G; Muthamilarasan M; Prasad M
    Adv Biochem Eng Biotechnol; 2018; 164():237-261. PubMed ID: 29356846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SET DOMAIN GROUP701 encodes a H3K4-methytransferase and regulates multiple key processes of rice plant development.
    Liu K; Yu Y; Dong A; Shen WH
    New Phytol; 2017 Jul; 215(2):609-623. PubMed ID: 28517045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic architecture of heterosis for yield traits in rice.
    Huang X; Yang S; Gong J; Zhao Q; Feng Q; Zhan Q; Zhao Y; Li W; Cheng B; Xia J; Chen N; Huang T; Zhang L; Fan D; Chen J; Zhou C; Lu Y; Weng Q; Han B
    Nature; 2016 Sep; 537(7622):629-633. PubMed ID: 27602511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensive allele-level remodeling of histone methylation modification in reciprocal F
    Lv Z; Zhang W; Wu Y; Huang S; Zhou Y; Zhang A; Deng X; Xu C; Xu Z; Gong L; Liu B
    Plant J; 2019 Feb; 97(3):571-586. PubMed ID: 30375057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids.
    He G; Chen B; Wang X; Li X; Li J; He H; Yang M; Lu L; Qi Y; Wang X; Deng XW
    Genome Biol; 2013 Jun; 14(6):R57. PubMed ID: 23758703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response.
    Garg R; Narayana Chevala V; Shankar R; Jain M
    Sci Rep; 2015 Oct; 5():14922. PubMed ID: 26449881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of Histone modifications and DNA methylation at OsBZ8 locus under salinity stress in IR64 and Nonabokra rice varieties.
    Paul A; Dasgupta P; Roy D; Chaudhuri S
    Plant Mol Biol; 2017 Sep; 95(1-2):63-88. PubMed ID: 28741224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic Mutation of RAV6 Affects Leaf Angle and Seed Size in Rice.
    Zhang X; Sun J; Cao X; Song X
    Plant Physiol; 2015 Nov; 169(3):2118-28. PubMed ID: 26351308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analyses of four major histone modifications in Arabidopsis hybrids at the germinating seed stage.
    Zhu A; Greaves IK; Dennis ES; Peacock WJ
    BMC Genomics; 2017 Feb; 18(1):137. PubMed ID: 28173754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of rice Snf2 family proteins and their potential roles in epigenetic regulation.
    Hu Y; Zhu N; Wang X; Yi Q; Zhu D; Lai Y; Zhao Y
    Plant Physiol Biochem; 2013 Sep; 70():33-42. PubMed ID: 23770592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA methylome analysis provides insights into gene regulatory mechanism for better performance of rice under fluctuating environmental conditions: epigenomics of adaptive plasticity.
    Kumar S; Seem K; Kumar S; Singh A; Krishnan SG; Mohapatra T
    Planta; 2023 Nov; 259(1):4. PubMed ID: 37993704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning approach to automate whole-genome prediction of diverse epigenomic modifications in plants.
    Wang Y; Zhang P; Guo W; Liu H; Li X; Zhang Q; Du Z; Hu G; Han X; Pu L; Tian J; Gu X
    New Phytol; 2021 Oct; 232(2):880-897. PubMed ID: 34287908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global epigenomic analysis indicates that epialleles contribute to Allele-specific expression via Allele-specific histone modifications in hybrid rice.
    Guo Z; Song G; Liu Z; Qu X; Chen R; Jiang D; Sun Y; Liu C; Zhu Y; Yang D
    BMC Genomics; 2015 Mar; 16(1):232. PubMed ID: 25886904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.