These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 28866963)
41. Mediated microbial biosensor using a novel yeast strain for wastewater BOD measurement. Trosok SP; Driscoll BT; Luong JH Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):550-4. PubMed ID: 11549036 [TBL] [Abstract][Full Text] [Related]
42. Using AI and BES/MFC to decrease the prediction time of BOD Medvedev I; Kornaukhova M; Galazis C; Lóránt B; Tardy GM; Losev A; Goryanin I Environ Monit Assess; 2023 Aug; 195(9):1018. PubMed ID: 37542117 [TBL] [Abstract][Full Text] [Related]
43. Microbial Fuel Cell-Based Biosensors. Cui Y; Lai B; Tang X Biosensors (Basel); 2019 Jul; 9(3):. PubMed ID: 31340591 [TBL] [Abstract][Full Text] [Related]
44. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Di Lorenzo M; Thomson AR; Schneider K; Cameron PJ; Ieropoulos I Biosens Bioelectron; 2014 Dec; 62():182-8. PubMed ID: 25005554 [TBL] [Abstract][Full Text] [Related]
45. FePO Zeng L; Li X; Shi Y; Qi Y; Huang D; Tadé M; Wang S; Liu S Biosens Bioelectron; 2017 May; 91():367-373. PubMed ID: 28056440 [TBL] [Abstract][Full Text] [Related]
46. Sustainable strategy on microbial fuel cell to treat the wastewater for the production of green energy. Saravanan A; Kumar PS; Srinivasan S; Jeevanantham S; Kamalesh R; Karishma S Chemosphere; 2022 Mar; 290():133295. PubMed ID: 34914952 [TBL] [Abstract][Full Text] [Related]
47. Bod measurement system with flowthrough electrode. Li YR; Chu J Chin J Biotechnol; 1989; 5(3):173-81. PubMed ID: 2491327 [TBL] [Abstract][Full Text] [Related]
48. Enhancing oxygen reduction reaction in air-cathode microbial fuel cells treating wastewater with cobalt and nitrogen co-doped ordered mesoporous carbon as cathode catalysts. Zhuang S; Shao C; Ye J; Li B; Wang X Environ Res; 2020 Dec; 191():110195. PubMed ID: 32919967 [TBL] [Abstract][Full Text] [Related]
49. Performance of a dual-chamber microbial fuel cell as biosensor for on-line measuring ammonium nitrogen in synthetic municipal wastewater. Do MH; Ngo HH; Guo W; Chang SW; Nguyen DD; Sharma P; Pandey A; Bui XT; Zhang X Sci Total Environ; 2021 Nov; 795():148755. PubMed ID: 34246151 [TBL] [Abstract][Full Text] [Related]
50. Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell. Wen Q; Wu Y; Zhao LX; Sun Q; Kong FY J Zhejiang Univ Sci B; 2010 Feb; 11(2):87-93. PubMed ID: 20104642 [TBL] [Abstract][Full Text] [Related]
51. A dual chamber microbial fuel cell based biosensor for monitoring copper and arsenic in municipal wastewater. Do MH; Ngo HH; Guo W; Chang SW; Nguyen DD; Pandey A; Sharma P; Varjani S; Nguyen TAH; Hoang NB Sci Total Environ; 2022 Mar; 811():152261. PubMed ID: 34902426 [TBL] [Abstract][Full Text] [Related]
52. Cathode performance as a factor in electricity generation in microbial fuel cells. Oh S; Min B; Logan BE Environ Sci Technol; 2004 Sep; 38(18):4900-4. PubMed ID: 15487802 [TBL] [Abstract][Full Text] [Related]
53. Simultaneous bioelectricity generation from cost-effective MFC and water treatment using various wastewater samples. Naik S; Jujjavarappu SE Environ Sci Pollut Res Int; 2020 Aug; 27(22):27383-27393. PubMed ID: 31456152 [TBL] [Abstract][Full Text] [Related]
54. Electricity production from molasses wastewater in two-chamber microbial fuel cell. Zhang YJ; Sun CY; Liu XY; Han W; Dong YX; Li YF Water Sci Technol; 2013; 68(2):494-8. PubMed ID: 23863446 [TBL] [Abstract][Full Text] [Related]
55. Evaluation of a continuous flow microbial fuel cell for treating synthetic swine wastewater containing antibiotics. Cheng D; Ngo HH; Guo W; Chang SW; Nguyen DD; Liu Y; Liu Y; Deng L; Chen Z Sci Total Environ; 2021 Feb; 756():144133. PubMed ID: 33279188 [TBL] [Abstract][Full Text] [Related]
56. Membrane-electrode assembly enhances performance of a microbial fuel cell type biological oxygen demand sensor. Kim M; Hyun MS; Gadd GM; Kim GT; Lee SJ; Kim HJ Environ Technol; 2009 Apr; 30(4):329-36. PubMed ID: 19492544 [TBL] [Abstract][Full Text] [Related]
57. Iron-nitrogen-activated carbon as cathode catalyst to improve the power generation of single-chamber air-cathode microbial fuel cells. Pan Y; Mo X; Li K; Pu L; Liu D; Yang T Bioresour Technol; 2016 Apr; 206():285-289. PubMed ID: 26898678 [TBL] [Abstract][Full Text] [Related]
58. Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells. Yang W; Logan BE ChemSusChem; 2016 Aug; 9(16):2226-32. PubMed ID: 27416965 [TBL] [Abstract][Full Text] [Related]
59. Synthesis of nickel-based layered double hydroxide (LDH) and their adsorption on carbon felt fibres: application as low cost cathode catalyst in microbial fuel cell (MFC). Djellali M; Kameche M; Kebaili H; Bouhent MM; Benhamou A Environ Technol; 2021 Jan; 42(3):492-504. PubMed ID: 31223060 [TBL] [Abstract][Full Text] [Related]
60. Electricity generation from wastewaters with starch as carbon source using a mediatorless microbial fuel cell. Herrero-Hernandez E; Smith TJ; Akid R Biosens Bioelectron; 2013 Jan; 39(1):194-8. PubMed ID: 22902238 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]