BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28867188)

  • 1. Disruption of the hydrogen bonding network determines the pH-induced non-fluorescent state of the fluorescent protein ZsYellow by protonation of Glu221.
    Bae JE; Kim IJ; Nam KH
    Biochem Biophys Res Commun; 2017 Nov; 493(1):562-567. PubMed ID: 28867188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral and structural analysis of large Stokes shift fluorescent protein dKeima570.
    Xu Y; Hwang KY; Nam KH
    J Microbiol; 2018 Nov; 56(11):822-827. PubMed ID: 30353468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic and Structural Analysis of Cu
    Kim IJ; Xu Y; Nam KH
    Biosensors (Basel); 2020 Mar; 10(3):. PubMed ID: 32210006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral and structural analysis of a red fluorescent protein from Acropora digitifera.
    Kim SE; Hwang KY; Nam KH
    Protein Sci; 2019 Feb; 28(2):375-381. PubMed ID: 30368951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design of a pH-insensitive cyan fluorescent protein CyPet2 based on the CyPet crystal structure.
    Liu R; Hu XJ; Ding Y
    FEBS Lett; 2017 Jun; 591(12):1761-1769. PubMed ID: 28504316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong hydrogen bond between glutamic acid 46 and chromophore leads to the intermediate spectral form and excited state proton transfer in the Y42F mutant of the photoreceptor photoactive yellow protein.
    Joshi CP; Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2009 Oct; 48(42):9980-93. PubMed ID: 19764818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromophore protonation state controls photoswitching of the fluoroprotein asFP595.
    Schäfer LV; Groenhof G; Boggio-Pasqua M; Robb MA; Grubmüller H
    PLoS Comput Biol; 2008 Mar; 4(3):e1000034. PubMed ID: 18369426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application.
    Hanson GT; McAnaney TB; Park ES; Rendell ME; Yarbrough DK; Chu S; Xi L; Boxer SG; Montrose MH; Remington SJ
    Biochemistry; 2002 Dec; 41(52):15477-88. PubMed ID: 12501176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational partitioning in pH-induced fluorescence of the kindling fluorescent protein (KFP).
    Rusanov AL; Mironov VA; Goryashenko AS; Grigorenko BL; Nemukhin AV; Savitsky AP
    J Phys Chem B; 2011 Jul; 115(29):9195-201. PubMed ID: 21671654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and spectral response of green fluorescent protein variants to changes in pH.
    Elsliger MA; Wachter RM; Hanson GT; Kallio K; Remington SJ
    Biochemistry; 1999 Apr; 38(17):5296-301. PubMed ID: 10220315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse pH-dependence of chromophore protonation explains the large Stokes shift of the red fluorescent protein mKeima.
    Violot S; Carpentier P; Blanchoin L; Bourgeois D
    J Am Chem Soc; 2009 Aug; 131(30):10356-7. PubMed ID: 19722611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic and energetic analysis of binding of selected anions to the yellow variants of green fluorescent protein.
    Wachter RM; Yarbrough D; Kallio K; Remington SJ
    J Mol Biol; 2000 Aug; 301(1):157-71. PubMed ID: 10926499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition between energy and proton transfer in ultrafast excited-state dynamics of an oligomeric fluorescent protein red Kaede.
    Hosoi H; Mizuno H; Miyawaki A; Tahara T
    J Phys Chem B; 2006 Nov; 110(45):22853-60. PubMed ID: 17092037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structural basis for the pH-dependent increase in fluorescence efficiency of chromoproteins.
    Battad JM; Wilmann PG; Olsen S; Byres E; Smith SC; Dove SG; Turcic KN; Devenish RJ; Rossjohn J; Prescott M
    J Mol Biol; 2007 May; 368(4):998-1010. PubMed ID: 17376484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modeling of green fluorescent protein: structural effects of chromophore deprotonation.
    Patnaik SS; Trohalaki S; Pachter R
    Biopolymers; 2004 Dec; 75(6):441-52. PubMed ID: 15497152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protonation and conformational dynamics of GFP mutants by two-photon excitation fluorescence correlation spectroscopy.
    Bosisio C; Quercioli V; Collini M; D'Alfonso L; Baldini G; Bettati S; Campanini B; Raboni S; Chirico G
    J Phys Chem B; 2008 Jul; 112(29):8806-14. PubMed ID: 18582099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein.
    Wachter RM; King BA; Heim R; Kallio K; Tsien RY; Boxer SG; Remington SJ
    Biochemistry; 1997 Aug; 36(32):9759-65. PubMed ID: 9245407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into GFPmut2 pH Dependence by Single Crystal Microspectrophotometry and X-ray Crystallography.
    Lolli G; Raboni S; Pasqualetto E; Benoni R; Campanini B; Ronda L; Mozzarelli A; Bettati S; Battistutta R
    J Phys Chem B; 2018 Dec; 122(49):11326-11337. PubMed ID: 30179482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast proton shuttling in Psammocora cyan fluorescent protein.
    Kennis JT; van Stokkum IH; Peterson DS; Pandit A; Wachter RM
    J Phys Chem B; 2013 Sep; 117(38):11134-43. PubMed ID: 23534404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An alternate proton acceptor for excited-state proton transfer in green fluorescent protein: rewiring GFP.
    Stoner-Ma D; Jaye AA; Ronayne KL; Nappa J; Meech SR; Tonge PJ
    J Am Chem Soc; 2008 Jan; 130(4):1227-35. PubMed ID: 18179211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.