These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 28867549)
1. The upper and lower segments of subscapularis muscle have different roles in glenohumeral joint functioning. Rathi S; Taylor NF; Green RA J Biomech; 2017 Oct; 63():92-97. PubMed ID: 28867549 [TBL] [Abstract][Full Text] [Related]
2. The effect of in vivo rotator cuff muscle contraction on glenohumeral joint translation: An ultrasonographic and electromyographic study. Rathi S; Taylor NF; Green RA J Biomech; 2016 Dec; 49(16):3840-3847. PubMed ID: 28573972 [TBL] [Abstract][Full Text] [Related]
3. The variable roles of the upper and lower subscapularis during shoulder motion. Wickham J; Pizzari T; Balster S; Ganderton C; Watson L Clin Biomech (Bristol); 2014 Sep; 29(8):885-91. PubMed ID: 25172119 [TBL] [Abstract][Full Text] [Related]
4. Glenohumeral joint translation and muscle activity in patients with symptomatic rotator cuff pathology: An ultrasonographic and electromyographic study with age-matched controls. Rathi S; Taylor NF; Soo B; Green RA J Sci Med Sport; 2018 Sep; 21(9):885-889. PubMed ID: 29525201 [TBL] [Abstract][Full Text] [Related]
5. The stabilizing role of the rotator cuff at the shoulder--responses to external perturbations. Day A; Taylor NF; Green RA Clin Biomech (Bristol); 2012 Jul; 27(6):551-6. PubMed ID: 22391506 [TBL] [Abstract][Full Text] [Related]
6. Stiffness regulation and muscle-recruitment strategies of the shoulder in response to external rotation perturbations. Huxel KC; Swanik CB; Swanik KA; Bartolozzi AR; Hillstrom HJ; Sitler MR; Moffit DM J Bone Joint Surg Am; 2008 Jan; 90(1):154-62. PubMed ID: 18171970 [TBL] [Abstract][Full Text] [Related]
7. Comparison of an EMG-based and a stress-based method to predict shoulder muscle forces. Engelhardt C; Malfroy Camine V; Ingram D; Müllhaupt P; Farron A; Pioletti D; Terrier A Comput Methods Biomech Biomed Engin; 2015; 18(12):1272-9. PubMed ID: 24697312 [TBL] [Abstract][Full Text] [Related]
8. Activation of the rotator cuff in generating isometric shoulder rotation torque. Jenp YN; Malanga GA; Growney ES; An KN Am J Sports Med; 1996; 24(4):477-85. PubMed ID: 8827307 [TBL] [Abstract][Full Text] [Related]
9. EMG and strength correlates of selected shoulder muscles during rotations of the glenohumeral joint. David G; Magarey ME; Jones MA; Dvir Z; Türker KS; Sharpe M Clin Biomech (Bristol); 2000 Feb; 15(2):95-102. PubMed ID: 10627325 [TBL] [Abstract][Full Text] [Related]
10. Static optimization underestimates antagonist muscle activity at the glenohumeral joint: A musculoskeletal modeling study. Kian A; Pizzolato C; Halaki M; Ginn K; Lloyd D; Reed D; Ackland D J Biomech; 2019 Dec; 97():109348. PubMed ID: 31668905 [TBL] [Abstract][Full Text] [Related]
11. A comparison of glenohumeral joint translation between young and older asymptomatic adults using ultrasonography: a secondary analysis. Rathi S; Taylor NF; Green RA Physiother Theory Pract; 2020 Dec; 36(12):1354-1362. PubMed ID: 30704320 [No Abstract] [Full Text] [Related]
12. Electromyographic analysis of internal rotational motion of the shoulder in various arm positions. Suenaga N; Minami A; Fujisawa H J Shoulder Elbow Surg; 2003; 12(5):501-5. PubMed ID: 14564277 [TBL] [Abstract][Full Text] [Related]
13. Muscle recruitment patterns of the subscapularis, serratus anterior and other shoulder girdle muscles during isokinetic internal and external rotations. Gaudet S; Tremblay J; Begon M J Sports Sci; 2018 May; 36(9):985-993. PubMed ID: 28673118 [TBL] [Abstract][Full Text] [Related]
14. Electromyographic analysis of the rotator cuff and deltoid musculature during common shoulder external rotation exercises. Reinold MM; Wilk KE; Fleisig GS; Zheng N; Barrentine SW; Chmielewski T; Cody RC; Jameson GG; Andrews JR J Orthop Sports Phys Ther; 2004 Jul; 34(7):385-94. PubMed ID: 15296366 [TBL] [Abstract][Full Text] [Related]
15. Effect of rotator cuff muscle imbalance on forceful internal impingement and peel-back of the superior labrum: a cadaveric study. Mihata T; Gates J; McGarry MH; Lee J; Kinoshita M; Lee TQ Am J Sports Med; 2009 Nov; 37(11):2222-7. PubMed ID: 19773527 [TBL] [Abstract][Full Text] [Related]
16. The effect of the arthroscopic augmentation of the subscapularis tendon on shoulder instability and range of motion: A biomechanical study. Schröter S; Krämer M; Welke B; Hurschler C; Russo R; Herbst M; Stöckle U; Ateschrang A; Maiotti M Clin Biomech (Bristol); 2016 Oct; 38():75-83. PubMed ID: 27585264 [TBL] [Abstract][Full Text] [Related]
17. The manual muscle examination for rotator cuff strength. An electromyographic investigation. Kelly BT; Kadrmas WR; Speer KP Am J Sports Med; 1996; 24(5):581-8. PubMed ID: 8883676 [TBL] [Abstract][Full Text] [Related]
18. Electromyographic analysis of the supraspinatus and deltoid muscles during 3 common rehabilitation exercises. Reinold MM; Macrina LC; Wilk KE; Fleisig GS; Dun S; Barrentine SW; Ellerbusch MT; Andrews JR J Athl Train; 2007; 42(4):464-9. PubMed ID: 18174934 [TBL] [Abstract][Full Text] [Related]
19. Isolation of infraspinatus in clinical test positions. Hughes PC; Green RA; Taylor NF J Sci Med Sport; 2014 May; 17(3):256-60. PubMed ID: 23809837 [TBL] [Abstract][Full Text] [Related]
20. Intramuscular wire electromyography of the subscapularis. Kadaba MP; Cole A; Wootten ME; McCann P; Reid M; Mulford G; April E; Bigliani L J Orthop Res; 1992 May; 10(3):394-7. PubMed ID: 1569502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]