These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28867697)

  • 1. [Studies of Neuronal Gene Regulation Controlling the Molecular Mechanisms Underlying Neural Plasticity].
    Fukuchi M
    Yakugaku Zasshi; 2017; 137(9):1103-1115. PubMed ID: 28867697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convergence of neurotransmissions at synapse on IEG regulation in nucleus.
    Fukuchi M; Tsuda M
    Front Biosci (Landmark Ed); 2017 Mar; 22(7):1052-1072. PubMed ID: 28199192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Activity-dependent gene expression for neuronal plasticity].
    Aizawa H; Ghosh A
    Seikagaku; 2006 Apr; 78(4):326-30. PubMed ID: 16715973
    [No Abstract]   [Full Text] [Related]  

  • 4. [Role of activity-dependent gene expression of BDNF gene in synaptic plasticity].
    Tsuda M; Hara D; Yasuda M; Fukuchi M; Tabuchi A
    Seikagaku; 2006 Oct; 78(10):998-1007. PubMed ID: 17131884
    [No Abstract]   [Full Text] [Related]  

  • 5. A form of long-lasting, learning-related synaptic plasticity in the hippocampus induced by heterosynaptic low-frequency pairing.
    Huang YY; Pittenger C; Kandel ER
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):859-64. PubMed ID: 14711997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weak synaptic activity induces ongoing signaling to the nucleus that is enhanced by BDNF and suppressed by low-levels of nicotine.
    Wheeler DG; Cooper E
    Mol Cell Neurosci; 2004 May; 26(1):50-62. PubMed ID: 15121178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic plasticity-regulated gene expression: a key event in the long-lasting changes of neuronal function.
    Tabuchi A
    Biol Pharm Bull; 2008 Mar; 31(3):327-35. PubMed ID: 18310887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic plasticity and mood disorders.
    Duman RS
    Mol Psychiatry; 2002; 7 Suppl 1():S29-34. PubMed ID: 11986993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional profiling of brain-derived-neurotrophic factor-induced neuronal plasticity: a novel role for nociceptin in hippocampal neurite outgrowth.
    Ring RH; Alder J; Fennell M; Kouranova E; Black IB; Thakker-Varia S
    J Neurobiol; 2006 Mar; 66(4):361-77. PubMed ID: 16408296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity-related genes in brain development and amygdala-dependent learning.
    Ehrlich DE; Josselyn SA
    Genes Brain Behav; 2016 Jan; 15(1):125-43. PubMed ID: 26419764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memory suppressor genes: inhibitory constraints on the storage of long-term memory.
    Abel T; Martin KC; Bartsch D; Kandel ER
    Science; 1998 Jan; 279(5349):338-41. PubMed ID: 9454331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BDNF-induced local protein synthesis and synaptic plasticity.
    Leal G; Comprido D; Duarte CB
    Neuropharmacology; 2014 Jan; 76 Pt C():639-56. PubMed ID: 23602987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-derived neurotrophic factor in amygdala-dependent learning.
    Rattiner LM; Davis M; Ressler KJ
    Neuroscientist; 2005 Aug; 11(4):323-33. PubMed ID: 16061519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: involvement of hippocampal plasticity via AKT, CREB and BDNF signaling.
    Aguiar AS; Castro AA; Moreira EL; Glaser V; Santos AR; Tasca CI; Latini A; Prediger RD
    Mech Ageing Dev; 2011; 132(11-12):560-7. PubMed ID: 21983475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms underlying activity-dependent regulation of BDNF expression.
    Shieh PB; Ghosh A
    J Neurobiol; 1999 Oct; 41(1):127-34. PubMed ID: 10504200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BDNF contributes to the facilitation of hippocampal synaptic plasticity and learning enabled by environmental enrichment.
    Novkovic T; Mittmann T; Manahan-Vaughan D
    Hippocampus; 2015 Jan; 25(1):1-15. PubMed ID: 25112659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-dependent regulation of plasticity-related proteins in the mouse hippocampus.
    Pollak DD; Scharl T; Leisch F; Herkner K; Villar SR; Hoeger H; Lubec G
    Behav Brain Res; 2005 Dec; 165(2):240-6. PubMed ID: 16162363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-term potentiation in rat medial prefrontal cortex.
    Sui L; Wang Y; Ju LH; Chen M
    Neurobiol Learn Mem; 2012 May; 97(4):425-40. PubMed ID: 22469747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain.
    Chen C; Tonegawa S
    Annu Rev Neurosci; 1997; 20():157-84. PubMed ID: 9056711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of F3/contactin expression profile in synaptic plasticity and memory in aged mice.
    Puzzo D; Bizzoca A; Loreto C; Guida CA; Gulisano W; Frasca G; Bellomo M; Castorina S; Gennarini G; Palmeri A
    Neurobiol Aging; 2015 Apr; 36(4):1702-1715. PubMed ID: 25659859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.