BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28867869)

  • 1. Porous Polyurethane Foam for Use as a Particle Collection Substrate in a Nanoparticle Respiratory Deposition Sampler.
    Mines LWD; Park JH; Mudunkotuwa IA; Anthony TR; Grassian VH; Peters TM
    Aerosol Sci Technol; 2016; 50(5):497-506. PubMed ID: 28867869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Evaluation of a High-Flowrate Nanoparticle Respiratory Deposition (NRD) Sampler.
    McCollom TIS; Stebounova LV; Park JH; Grassian VH; Gonzalez-Pech NI; Peters TM
    J Aerosol Sci; 2019 Aug; 134():72-79. PubMed ID: 37752991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonwoven textile for use in a nanoparticle respiratory deposition sampler.
    Vosburgh DJ; Park JH; Mines LW; Mudunkotuwa IA; Anthony TR; Peters TM
    J Occup Environ Hyg; 2017 May; 14(5):368-376. PubMed ID: 27875101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Granular Bed for Use in a Nanoparticle Respiratory Deposition Sampler.
    Park JH; Mudunkotuwa IA; Mines LW; Anthony TR; Grassian VH; Peters TM
    Aerosol Sci Technol; 2015; 49(3):179-187. PubMed ID: 26900208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for assessing respiratory deposition of welding fume nanoparticles.
    Cena LG; Keane MJ; Chisholm WP; Stone S; Harper M; Chen BT
    J Occup Environ Hyg; 2014; 11(12):771-80. PubMed ID: 24824154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A personal nanoparticle respiratory deposition (NRD) sampler.
    Cena LG; Anthony TR; Peters TM
    Environ Sci Technol; 2011 Aug; 45(15):6483-90. PubMed ID: 21718022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle Concentrations in Occupational Settings Measured with a Nanoparticle Respiratory Deposition (NRD) Sampler.
    Stebounova LV; Gonzalez-Pech NI; Park JH; Anthony TR; Grassian VH; Peters TM
    Ann Work Expo Health; 2018 Jul; 62(6):699-710. PubMed ID: 29788211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of neutralized particles on the sampling efficiency of polyurethane foam used to estimate the extrathoracic deposition fraction.
    Tomyn RL; Sleeth DK; Thiese MS; Larson RR
    J Occup Environ Hyg; 2016; 13(2):133-40. PubMed ID: 26513302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler.
    Sleeth DK; Balthaser SA; Collingwood S; Larson RR
    Int J Environ Res Public Health; 2016 Mar; 13(3):. PubMed ID: 26959046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a sampler for total aerosol deposition in the human respiratory tract.
    Koehler KA; Clark P; Volckens J
    Ann Occup Hyg; 2009 Oct; 53(7):731-8. PubMed ID: 19638392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle Collection Efficiency for Nylon Mesh Screens.
    Cena LG; Ku BK; Peters TM
    Aerosol Sci Technol; 2012; 46(2):214-221. PubMed ID: 26692631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Field Study on the Respiratory Deposition of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals.
    Cena LG; Chisholm WP; Keane MJ; Chen BT
    J Occup Environ Hyg; 2015; 12(10):721-8. PubMed ID: 25985454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes.
    Chang C; Demokritou P; Shafer M; Christiani D
    Environ Sci Process Impacts; 2013 Jan; 15(1):214-24. PubMed ID: 24592438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Air sampling methodology for asphalt fume in asphalt production and asphalt roofing manufacturing facilities: total particulate sampler versus inhalable particulate sampler.
    Calzavara TS; Carter CM; Axten C
    Appl Occup Environ Hyg; 2003 May; 18(5):358-67. PubMed ID: 12746079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride.
    Cho HW; Yoon CS; Lee JH; Lee SJ; Viner A; Johnson EW
    Ann Occup Hyg; 2011 Jul; 55(6):666-80. PubMed ID: 21742627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a High-Volume, Low-Cutoff Inertial Impactor.
    Kavouras IG; Ferguson ST; Wolfson JM; Koutrakis P
    Inhal Toxicol; 2000 Jan; 12 Suppl 2():35-50. PubMed ID: 26368520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle size and metal composition of gouging and lancing fumes.
    Keyter M; Van Der Merwe A; Franken A
    J Occup Environ Hyg; 2019 Sep; 16(9):643-655. PubMed ID: 31361583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evaluation of a novel personal sampler for PM
    Lai CY; Chao HR; Tsai YI; Huang XY; Lin TH
    Sci Total Environ; 2019 Sep; 682():709-718. PubMed ID: 31141753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.
    Tian L; Inthavong K; Lidén G; Shang Y; Tu J
    Ann Occup Hyg; 2016 Jul; 60(6):731-47. PubMed ID: 27074799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a novel personal nanoparticle sampler.
    Zhou Y; Irshad H; Tsai CJ; Hung SM; Cheng YS
    Environ Sci Process Impacts; 2014 Feb; 16(2):203-10. PubMed ID: 24337074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.