These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28867869)

  • 21. Design and validation of a high-flow personal sampler for PM2.5.
    Adams HS; Kenny LC; Nieuwenhuijsen MJ; Colvile RN; Gussman RA
    J Expo Anal Environ Epidemiol; 2001; 11(1):5-11. PubMed ID: 11246801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A headset-mounted mini sampler for measuring exposure to welding aerosol in the breathing zone.
    Lidén G; Surakka J
    Ann Occup Hyg; 2009 Mar; 53(2):99-116. PubMed ID: 19196747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sound Absorption and Insulation Properties of a Polyurethane Foam Mixed with Electrospun Nylon-6 and Polyurethane Nanofibre Mats.
    Park M; Park HK; Shin HK; Kang D; Pant B; Kim H; Song JK; Kim HY
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3558-3563. PubMed ID: 30744785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Particulate penetration of porous foam used as a low flow rate respirable dust size classifier.
    Page SJ; Volkwein JC; Baron PA; Deye GJ
    Appl Occup Environ Hyg; 2000 Jul; 15(7):561-8. PubMed ID: 10893792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Respiratory deposition of ultrafine welding fume particles.
    Su WC; Chen Y; Bezerra M; Wang J
    J Occup Environ Hyg; 2019 Oct; 16(10):694-706. PubMed ID: 31461396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thoracic size-selective sampling of fibres: performance of four types of thoracic sampler in laboratory tests.
    Jones AD; Aitken RJ; Fabriès JF; Kauffer E; Liden G; Maynard A; Riediger G; Sahle W
    Ann Occup Hyg; 2005 Aug; 49(6):481-92. PubMed ID: 15790615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance enhancement of polyurethane foam applied to optical fiber microphones.
    Zhang L; Song Q; Lai X; Ma Y; Xiao Q; Jia B
    Appl Opt; 2022 May; 61(15):4322-4328. PubMed ID: 36256268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Particle-phase collection efficiency of the OVS and IFV Pro personal pesticide samplers.
    Alex S; Sovers M; O'Shaughnessy PT
    J Occup Environ Hyg; 2021 Dec; 18(12):579-589. PubMed ID: 34612175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of Three-Stage Bioaerosol Sampler for Size-Selective Sampling.
    Lim JH; Nam SH; Kim J; Kim NH; Park GS; Maeng JS; Yook SJ
    J Biomech Eng; 2022 Jul; 144(7):. PubMed ID: 35013744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of a 25-mm disposable sampler relative to the inhalable aerosol convention.
    Borsh FB; Sleeth DK; Handy RG; Pahler LF; Andrews R; Ashley K
    J Occup Environ Hyg; 2019 Sep; 16(9):634-642. PubMed ID: 31298629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance of Air-O-Cell, Burkard, and Button Samplers for total enumeration of airborne spores.
    Aizenberg V; Reponen T; Grinshpun SA; Willeke K
    AIHAJ; 2000; 61(6):855-64. PubMed ID: 11192220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Dust collection efficiency of commercial gas collection tubes].
    Hata M; Furuuchi M; Sok P; Amin M; Umehara Y; Takao M; Higashikubo I; Imanaka T; Suzuki Y; Nakamura A; Yamazaki M
    Sangyo Eiseigaku Zasshi; 2022 Jul; 64(4):186-197. PubMed ID: 34657897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of wood-dust aerosol size-distributions collected by air samplers.
    Harper M; Akbar MZ; Andrew ME
    J Environ Monit; 2004 Jan; 6(1):18-22. PubMed ID: 14737465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sampling of respirable isocyanate particles.
    Gylestam D; Gustavsson M; Karlsson D; Dalene M; Skarping G
    Ann Occup Hyg; 2014 Apr; 58(3):340-54. PubMed ID: 24371044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a high-volume air sampler for nanoparticles.
    Hata M; Thongyen T; Bao L; Hoshino A; Otani Y; Ikeda T; Furuuchi M
    Environ Sci Process Impacts; 2013 Feb; 15(2):454-62. PubMed ID: 25208710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The suitability of the IOM foam sampler for bioaerosol sampling in Occupational Environments.
    Haatainen S; Laitinen J; Linnainmaa M; Reponen T; Kalliokoski P
    J Occup Environ Hyg; 2010 Jan; 7(1):1-6. PubMed ID: 19904652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A New Miniature Respirable Sampler for In-mask Sampling: Part 1-Particle Size Selection Performance.
    Stacey P; Thorpe A; Mogridge R; Lee T; Harper M
    Ann Occup Hyg; 2016 Nov; 60(9):1072-1083. PubMed ID: 27630151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative microscopic study of human and rat lungs after overexposure to welding fume.
    Antonini JM; Roberts JR; Schwegler-Berry D; Mercer RR
    Ann Occup Hyg; 2013 Nov; 57(9):1167-79. PubMed ID: 23798603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A constant flow filter air sampler for workplace environments.
    Parulian A; Rodgers JC; McFarland AR
    Health Phys; 1996 Dec; 71(6):870-8. PubMed ID: 8919070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.