These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28867995)

  • 1. Does Spatial Navigation Have a Blind-Spot? Visiocentrism Is Not Enough to Explain the Navigational Behavior Comprehensively.
    Hohol M; Baran B; Krzyżowski M; Francikowski J
    Front Behav Neurosci; 2017; 11():154. PubMed ID: 28867995
    [No Abstract]   [Full Text] [Related]  

  • 2. The Key of the Maze: The role of mental imagery and cognitive flexibility in navigational planning.
    Bocchi A; Carrieri M; Lancia S; Quaresima V; Piccardi L
    Neurosci Lett; 2017 Jun; 651():146-150. PubMed ID: 28495273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistically Optimal Cue Integration During Human Spatial Navigation.
    Newman PM; Qi Y; Mou W; McNamara TP
    Psychon Bull Rev; 2023 Oct; 30(5):1621-1642. PubMed ID: 37038031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blocking spatial navigation across environments that have a different shape.
    Buckley MG; Smith AD; Haselgrove M
    J Exp Psychol Anim Learn Cogn; 2016 Jan; 42(1):51-66. PubMed ID: 26569017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The representation selection problem: Why we should favor the geometric-module framework of spatial reorientation over the view-matching framework.
    Duval A
    Cognition; 2019 Nov; 192():103985. PubMed ID: 31234079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Representation of human spatial navigation responding to input spatial information and output navigational strategies: An ALE meta-analysis.
    Qiu Y; Wu Y; Liu R; Wang J; Huang H; Huang R
    Neurosci Biobehav Rev; 2019 Aug; 103():60-72. PubMed ID: 31201830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Path integration, views, search, and matched filters: the contributions of Rüdiger Wehner to the study of orientation and navigation.
    Cheng K; Freas CA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Jun; 201(6):517-32. PubMed ID: 25663391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Navigation and the Central Complex: Sensory Acquisition, Orientation, and Motor Control.
    Varga AG; Kathman ND; Martin JP; Guo P; Ritzmann RE
    Front Behav Neurosci; 2017; 11():4. PubMed ID: 28174527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switching from reaching to navigation: differential cognitive strategies for spatial memory in children and adults.
    Belmonti V; Cioni G; Berthoz A
    Dev Sci; 2015 Jul; 18(4):569-86. PubMed ID: 25443319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gender differences in spatial navigation: Characterizing wayfinding behaviors.
    Munion AK; Stefanucci JK; Rovira E; Squire P; Hendricks M
    Psychon Bull Rev; 2019 Dec; 26(6):1933-1940. PubMed ID: 31432331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The insect central complex and the neural basis of navigational strategies.
    Honkanen A; Adden A; da Silva Freitas J; Heinze S
    J Exp Biol; 2019 Feb; 222(Pt Suppl 1):. PubMed ID: 30728235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steering intermediate courses: desert ants combine information from various navigational routines.
    Wehner R; Hoinville T; Cruse H; Cheng K
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Jul; 202(7):459-72. PubMed ID: 27259296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurons including hippocampal spatial view cells, and navigation in primates including humans.
    Rolls ET
    Hippocampus; 2021 Jun; 31(6):593-611. PubMed ID: 33760309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amblypygids: Model Organisms for the Study of Arthropod Navigation Mechanisms in Complex Environments?
    Wiegmann DD; Hebets EA; Gronenberg W; Graving JM; Bingman VP
    Front Behav Neurosci; 2016; 10():47. PubMed ID: 27014008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real world navigation independence in the early blind correlates with differential brain activity associated with virtual navigation.
    Halko MA; Connors EC; Sánchez J; Merabet LB
    Hum Brain Mapp; 2014 Jun; 35(6):2768-78. PubMed ID: 24027192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal interactions in insect navigation.
    Buehlmann C; Mangan M; Graham P
    Anim Cogn; 2020 Nov; 23(6):1129-1141. PubMed ID: 32323027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Considerations on the role of olfactory input in avian navigation.
    Wiltschko R; Wiltschko W
    J Exp Biol; 2017 Dec; 220(Pt 23):4347-4350. PubMed ID: 29187617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the neural basis of insect navigation.
    Heinze S
    Curr Opin Insect Sci; 2017 Dec; 24():58-67. PubMed ID: 29208224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empowering episodic memory through a model-based egocentric navigational training.
    Fragueiro A; Tosoni A; Di Matteo R; Committeri G
    Psychol Res; 2023 Sep; 87(6):1743-1752. PubMed ID: 36478126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential navigational strategies during spatial learning in a new modified version of the Oasis maze.
    Concha-Miranda M; More J; Grinspun N; Sanchez C; Paula-Lima A; Valdés JL
    Behav Brain Res; 2020 May; 385():112555. PubMed ID: 32109438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.