BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28868570)

  • 21. Genetic structure of duckweed population of Spirodela, Landoltia and Lemna from Lake Tai, China.
    Tang J; Zhang F; Cui W; Ma J
    Planta; 2014 Jun; 239(6):1299-307. PubMed ID: 24663442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toxic effects of pentachlorophenol on Lemna polyrhiza.
    Song Z; Huang G
    Ecotoxicol Environ Saf; 2007 Mar; 66(3):343-7. PubMed ID: 16325908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytoremediation potential of duckweed (Lemna minor L.) in degradation of C.I. Acid Blue 92: artificial neural network modeling.
    Khataee AR; Movafeghi A; Torbati S; Salehi Lisar SY; Zarei M
    Ecotoxicol Environ Saf; 2012 Jun; 80():291-8. PubMed ID: 22498423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioaccumulation and toxicity assessment of irrigation water contaminated with boron (B) using duckweed (Lemna gibba L.) in a batch reactor system.
    Türker OC; Yakar A; Gür N
    J Hazard Mater; 2017 Feb; 324(Pt B):151-159. PubMed ID: 27780623
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heavy metals/-metalloids (As) phytoremediation with Landoltia punctata and Lemna sp. (duckweeds): coupling with biorefinery prospects for sustainable phytotechnologies.
    Rai PK; Nongtri ES
    Environ Sci Pollut Res Int; 2024 Mar; 31(11):16216-16240. PubMed ID: 38334920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide.
    Obermeier M; Schröder CA; Helmreich B; Schröder P
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18495-507. PubMed ID: 26286797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytoremediation of anaerobically digested swine wastewater contaminated by oxytetracycline via Lemna aequinoctialis: Nutrient removal, growth characteristics and degradation pathways.
    Hu H; Zhou Q; Li X; Lou W; Du C; Teng Q; Zhang D; Liu H; Zhong Y; Yang C
    Bioresour Technol; 2019 Nov; 291():121853. PubMed ID: 31377510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Boron (B) removal and bioelectricity captured from irrigation water using engineered duckweed-microbial fuel cell: effect of plant species and vegetation structure.
    Türker OC; Yakar A; Türe C; Saz Ç
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31522-31536. PubMed ID: 31478178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sorption of cadmium, chromium, lead, and vanadium from artificial wetlands using
    Ekperusi AO; Sikoki FD; Nwachukwu EO
    Int J Phytoremediation; 2024; 26(6):873-881. PubMed ID: 37897245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inter- and intra-specific competition of duckweed under multiple heavy metal contaminated water.
    Zhao Z; Shi H; Kang X; Liu C; Chen L; Liang X; Jin L
    Aquat Toxicol; 2017 Nov; 192():216-223. PubMed ID: 28985588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of selenite on chlorophyll fluorescence, starch content and fatty acid in the duckweed Landoltia punctata.
    Zhong Y; Li Y; Cheng JJ
    J Plant Res; 2016 Sep; 129(5):997-1004. PubMed ID: 27400684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative transcriptome analysis of duckweed (Landoltia punctata) in response to cadmium provides insights into molecular mechanisms underlying hyperaccumulation.
    Xu H; Yu C; Xia X; Li M; Li H; Wang Y; Wang S; Wang C; Ma Y; Zhou G
    Chemosphere; 2018 Jan; 190():154-165. PubMed ID: 28987404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Growth feature of biomass of Lemna aequinoctialis and Spirodela polyrrhiza in medium with nutrient character of wastewater].
    Chong YX; Hu HY; Qian Y
    Huan Jing Ke Xue; 2004 Nov; 25(6):59-64. PubMed ID: 15759882
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decrease and increase profile of Cu, Cr and Pb during stable phase of removal by duckweed (Lemna minor L.).
    Uçüncü E; Tunca E; Fikirdeşici S; Altindağ A
    Int J Phytoremediation; 2013; 15(4):376-84. PubMed ID: 23488003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon and energy fixation of great duckweed Spirodela polyrhiza growing in swine wastewater.
    Wang W; Yang C; Tang X; Zhu Q; Pan K; Cai D; Hu Q; Ma D
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15804-11. PubMed ID: 26036587
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytoremediation potential of Lemna minor L. for heavy metals.
    Bokhari SH; Ahmad I; Mahmood-Ul-Hassan M; Mohammad A
    Int J Phytoremediation; 2016; 18(1):25-32. PubMed ID: 26114480
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of lead ions from aqueous solution by the dried aquatic plant, Lemna perpusilla Torr.
    Tang Y; Chen L; Wei X; Yao Q; Li T
    J Hazard Mater; 2013 Jan; 244-245():603-12. PubMed ID: 23182246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.
    Shi W; Wang L; Rousseau DP; Lens PN
    Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of mercury (Hg) bioaccumulation with mono- and mixed Lemna minor and Spirodela polyrhiza cultures.
    Spencer BS; Baddar ZE; Xu X
    Environ Sci Pollut Res Int; 2024 May; 31(24):35055-35068. PubMed ID: 38714618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PH dependent toxicity of pyridine raffinate to a common duckweed, Lemna minor L.
    Chandra R; Singh BB
    Bull Environ Contam Toxicol; 2005 May; 74(5):886-93. PubMed ID: 16097322
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.