These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 28868648)
1. Improvement of Electrochemical Water Oxidation by Fine-Tuning the Structure of Tetradentate N Shen J; Wang M; Gao J; Han H; Liu H; Sun L ChemSusChem; 2017 Nov; 10(22):4581-4588. PubMed ID: 28868648 [TBL] [Abstract][Full Text] [Related]
2. Studies of the pathways open to copper water oxidation catalysts containing proximal hydroxy groups during basic electrocatalysis. Gerlach DL; Bhagan S; Cruce AA; Burks DB; Nieto I; Truong HT; Kelley SP; Herbst-Gervasoni CJ; Jernigan KL; Bowman MK; Pan S; Zeller M; Papish ET Inorg Chem; 2014 Dec; 53(24):12689-98. PubMed ID: 25427106 [TBL] [Abstract][Full Text] [Related]
3. Nickel(II) complexes of tripodal 4N ligands as catalysts for alkane oxidation using m-CPBA as oxidant: ligand stereoelectronic effects on catalysis. Balamurugan M; Mayilmurugan R; Suresh E; Palaniandavar M Dalton Trans; 2011 Oct; 40(37):9413-24. PubMed ID: 21850329 [TBL] [Abstract][Full Text] [Related]
4. Electrocatalytic Water Oxidation by Mononuclear Copper Complexes of Bis-amide Ligands with N4 Donor: Experimental and Theoretical Investigation. Khan S; Sengupta S; Khan MA; Sk MP; Jana NC; Naskar S Inorg Chem; 2024 Jan; 63(4):1888-1897. PubMed ID: 38232755 [TBL] [Abstract][Full Text] [Related]
5. Dinuclear complexes of copper and zinc with m-xylene/cyclohexane-linked bis-aspartic acids: synthesis, characterization, dioxygen activation, and catalytic oxidation of nitrobenzene in pure aqueous solution. Zhu S; Qiu Z; Ni T; Zhao X; Yan S; Xing F; Zhao Y; Bai Y; Li M Dalton Trans; 2013 Aug; 42(30):10898-911. PubMed ID: 23787993 [TBL] [Abstract][Full Text] [Related]
6. Copper complexes relevant to the catalytic cycle of copper nitrite reductase: electrochemical detection of NO(g) evolution and flipping of NO2 binding mode upon Cu(II) → Cu(I) reduction. Maji RC; Barman SK; Roy S; Chatterjee SK; Bowles FL; Olmstead MM; Patra AK Inorg Chem; 2013 Oct; 52(19):11084-95. PubMed ID: 24066957 [TBL] [Abstract][Full Text] [Related]
7. A molecular copper catalyst for electrochemical water reduction with a large hydrogen-generation rate constant in aqueous solution. Zhang P; Wang M; Yang Y; Yao T; Sun L Angew Chem Int Ed Engl; 2014 Dec; 53(50):13803-7. PubMed ID: 25314646 [TBL] [Abstract][Full Text] [Related]
8. Electrocatalytic Water Oxidation by MnO Melder J; Kwong WL; Shevela D; Messinger J; Kurz P ChemSusChem; 2017 Nov; 10(22):4491-4502. PubMed ID: 28869720 [TBL] [Abstract][Full Text] [Related]
9. Electrocatalytic Water Oxidation Activity of Molecular Copper Complexes: Effect of Redox-Active Ligands. Bera M; Keshari K; Bhardwaj A; Gupta G; Mondal B; Paria S Inorg Chem; 2022 Feb; 61(7):3152-3165. PubMed ID: 35119860 [TBL] [Abstract][Full Text] [Related]
10. A biomimetic copper water oxidation catalyst with low overpotential. Zhang T; Wang C; Liu S; Wang JL; Lin W J Am Chem Soc; 2014 Jan; 136(1):273-81. PubMed ID: 24325734 [TBL] [Abstract][Full Text] [Related]
11. Rational Design of Sulfur-Doped Copper Catalysts for the Selective Electroreduction of Carbon Dioxide to Formate. Huang Y; Deng Y; Handoko AD; Goh GKL; Yeo BS ChemSusChem; 2018 Jan; 11(1):320-326. PubMed ID: 28881436 [TBL] [Abstract][Full Text] [Related]
12. A new copper species based on an azo-compound utilized as a homogeneous catalyst for water oxidation. Yu WB; He QY; Ma XF; Shi HT; Wei X Dalton Trans; 2015 Jan; 44(1):351-8. PubMed ID: 25382024 [TBL] [Abstract][Full Text] [Related]
13. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands. Duan L; Wang L; Li F; Li F; Sun L Acc Chem Res; 2015 Jul; 48(7):2084-96. PubMed ID: 26131964 [TBL] [Abstract][Full Text] [Related]
14. Electrocatalytic water oxidation with a copper(II) polypeptide complex. Zhang MT; Chen Z; Kang P; Meyer TJ J Am Chem Soc; 2013 Feb; 135(6):2048-51. PubMed ID: 23350950 [TBL] [Abstract][Full Text] [Related]
15. Bioinspired copper(I) complexes that exhibit monooxygenase and catechol dioxygenase activity. Arnold A; Metzinger R; Limberg C Chemistry; 2015 Jan; 21(3):1198-207. PubMed ID: 25395055 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of 4-electron O2 reduction by a Cu(ii)-pyridylamine complex via protonation of a pendant pyridine in the second coordination sphere in water. Kotani H; Yagi T; Ishizuka T; Kojima T Chem Commun (Camb); 2015 Sep; 51(69):13385-8. PubMed ID: 26207327 [TBL] [Abstract][Full Text] [Related]
17. Efficient Light-Driven Water Oxidation Catalysis by Dinuclear Ruthenium Complexes. Berardi S; Francàs L; Neudeck S; Maji S; Benet-Buchholz J; Meyer F; Llobet A ChemSusChem; 2015 Nov; 8(21):3688-96. PubMed ID: 26423045 [TBL] [Abstract][Full Text] [Related]
18. Copper as a robust and transparent electrocatalyst for water oxidation. Du J; Chen Z; Ye S; Wiley BJ; Meyer TJ Angew Chem Int Ed Engl; 2015 Feb; 54(7):2073-8. PubMed ID: 25581365 [TBL] [Abstract][Full Text] [Related]
19. Novel square pyramidal iron(III) complexes of linear tetradentate bis(phenolate) ligands as structural and reactive models for intradiol-cleaving 3,4-PCD enzymes: Quinone formation vs. intradiol cleavage. Mayilmurugan R; Sankaralingam M; Suresh E; Palaniandavar M Dalton Trans; 2010 Oct; 39(40):9611-25. PubMed ID: 20835480 [TBL] [Abstract][Full Text] [Related]
20. Catalytic catechol oxidation by copper complexes: development of a structure-activity relationship. Ording-Wenker EC; Siegler MA; Lutz M; Bouwman E Dalton Trans; 2015 Jul; 44(27):12196-209. PubMed ID: 25869395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]