BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28868744)

  • 21. Crystal structure of the FliF-FliG complex from
    Xue C; Lam KH; Zhang H; Sun K; Lee SH; Chen X; Au SWN
    J Biol Chem; 2018 Feb; 293(6):2066-2078. PubMed ID: 29229777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The crystal structure of Escherichia coli spermidine synthase SpeE reveals a unique substrate-binding pocket.
    Zhou X; Chua TK; Tkaczuk KL; Bujnicki JM; Sivaraman J
    J Struct Biol; 2010 Mar; 169(3):277-85. PubMed ID: 20051267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insight into adaptive remodeling of the rotor ring complex of the bacterial flagellar motor.
    Kinoshita M; Furukawa Y; Uchiyama S; Imada K; Namba K; Minamino T
    Biochem Biophys Res Commun; 2018 Jan; 496(1):12-17. PubMed ID: 29294326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Helicobacter pylori does not use spermidine synthase to produce spermidine.
    Zhang H; Au SWN
    Biochem Biophys Res Commun; 2017 Aug; 490(3):861-867. PubMed ID: 28648602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Helicobacter pylori FlhB function: the FlhB C-terminal homologue HP1575 acts as a "spare part" to permit flagellar export when the HP0770 FlhBCC domain is deleted.
    Wand ME; Sockett RE; Evans KJ; Doherty N; Sharp PM; Hardie KR; Winzer K
    J Bacteriol; 2006 Nov; 188(21):7531-41. PubMed ID: 17050924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Switching of bacterial flagellar motors [corrected] triggered by mutant FliG.
    Lele PP; Berg HC
    Biophys J; 2015 Mar; 108(5):1275-80. PubMed ID: 25762339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural effects of mutations in Salmonella typhimurium flagellar switch complex.
    Zhao R; Schuster SC; Khan S
    J Mol Biol; 1995 Aug; 251(3):400-12. PubMed ID: 7650739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stoichiometry and turnover of the bacterial flagellar switch protein FliN.
    Delalez NJ; Berry RM; Armitage JP
    mBio; 2014 Jul; 5(4):e01216-14. PubMed ID: 24987089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of activated CheY1 from Helicobacter pylori.
    Lam KH; Ling TK; Au SW
    J Bacteriol; 2010 May; 192(9):2324-34. PubMed ID: 20207758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signal-dependent turnover of the bacterial flagellar switch protein FliM.
    Delalez NJ; Wadhams GH; Rosser G; Xue Q; Brown MT; Dobbie IM; Berry RM; Leake MC; Armitage JP
    Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11347-51. PubMed ID: 20498085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism for adaptive remodeling of the bacterial flagellar switch.
    Lele PP; Branch RW; Nathan VS; Berg HC
    Proc Natl Acad Sci U S A; 2012 Dec; 109(49):20018-22. PubMed ID: 23169659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions between C ring proteins and export apparatus components: a possible mechanism for facilitating type III protein export.
    González-Pedrajo B; Minamino T; Kihara M; Namba K
    Mol Microbiol; 2006 May; 60(4):984-98. PubMed ID: 16677309
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Counterclockwise rotation of the flagellum promotes biofilm initiation in
    Liu X; Lertsethtakarn P; Mariscal VT; Yildiz F; Ottemann KM
    mBio; 2024 Jun; 15(6):e0044024. PubMed ID: 38700325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assembly states of FliM and FliG within the flagellar switch complex.
    Sircar R; Borbat PP; Lynch MJ; Bhatnagar J; Beyersdorf MS; Halkides CJ; Freed JH; Crane BR
    J Mol Biol; 2015 Feb; 427(4):867-886. PubMed ID: 25536293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Subunit organization and reversal-associated movements in the flagellar switch of Escherichia coli.
    Sarkar MK; Paul K; Blair DF
    J Biol Chem; 2010 Jan; 285(1):675-84. PubMed ID: 19858188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor.
    Pandini A; Kleinjung J; Rasool S; Khan S
    PLoS One; 2015; 10(11):e0142407. PubMed ID: 26561852
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Motility protein complexes in the bacterial flagellar motor.
    Tang H; Braun TF; Blair DF
    J Mol Biol; 1996 Aug; 261(2):209-21. PubMed ID: 8757288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy complexes are apparently associated with the switch-motor complex of bacterial flagella.
    Zarbiv G; Li H; Wolf A; Cecchini G; Caplan SR; Sourjik V; Eisenbach M
    J Mol Biol; 2012 Feb; 416(2):192-207. PubMed ID: 22210351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulated underexpression and overexpression of the FliN protein of Escherichia coli and evidence for an interaction between FliN and FliM in the flagellar motor.
    Tang H; Billings S; Wang X; Sharp L; Blair DF
    J Bacteriol; 1995 Jun; 177(12):3496-503. PubMed ID: 7768859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A slight bending of an α-helix in FliM creates a counterclockwise-locked structure of the flagellar motor in Vibrio.
    Takekawa N; Nishikino T; Yamashita T; Hori K; Onoue Y; Ihara K; Kojima S; Homma M; Imada K
    J Biochem; 2021 Dec; 170(4):531-538. PubMed ID: 34143212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.