These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 28869428)

  • 1. Preliminary studies of PVA/PVP blends incorporated with HAp and β-TCP bone ceramic as template for hard tissue engineering.
    Uma Maheshwari S; Govindan K; Raja M; Raja A; Pravin MBS; Vasanth Kumar S
    Biomed Mater Eng; 2017; 28(4):401-415. PubMed ID: 28869428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAP) composite scaffolds for probable biological application.
    Chaudhuri B; Mondal B; Ray SK; Sarkar SC
    Colloids Surf B Biointerfaces; 2016 Jul; 143():71-80. PubMed ID: 26998868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations.
    Warnke PH; Seitz H; Warnke F; Becker ST; Sivananthan S; Sherry E; Liu Q; Wiltfang J; Douglas T
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):212-7. PubMed ID: 20091914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc and manganese substituted hydroxyapatite/CMC/PVP electrospun composite for bone repair applications.
    Kandasamy S; Narayanan V; Sumathi S
    Int J Biol Macromol; 2020 Feb; 145():1018-1030. PubMed ID: 31726129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM
    J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration.
    Gupta V; Lyne DV; Barragan M; Berkland CJ; Detamore MS
    J Mater Sci Mater Med; 2016 Jul; 27(7):121. PubMed ID: 27272903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced bone regeneration composite scaffolds of PLLA/β-TCP matrix grafted with gelatin and HAp.
    Wang JL; Chen Q; Du BB; Cao L; Lin H; Fan ZY; Dong J
    Mater Sci Eng C Mater Biol Appl; 2018 Jun; 87():60-69. PubMed ID: 29549950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the natural genesis of β-TCP/HAp phases in postnatal fishbones towards gold standard biocomposites for bone regeneration.
    Weinand WR; Cruz JA; Medina AN; Lima WM; Sato F; da Silva Palacios R; Gibin MS; Volnistem EA; Rosso JM; Santos IA; Rohling JH; Bento AC; Baesso ML; da Silva CG; Dos Santos EX; Scatolim DB; Gavazzoni A; Queiroz AF; Companhoni MVP; Nakamura TU; Hernandes L; Bonadio TGM; Miranda LCM
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121407. PubMed ID: 35636138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating protein incorporation and release in electrospun composite scaffolds for bone tissue engineering applications.
    Briggs T; Matos J; Collins G; Arinzeh TL
    J Biomed Mater Res A; 2015 Oct; 103(10):3117-27. PubMed ID: 25720595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tricomponent composite containing copper-hydroxyapatite/chitosan/polyvinyl pyrrolidone for bone tissue engineering.
    Narayanan V; Sumathi S; Narayanasamy ANR
    J Biomed Mater Res A; 2020 Sep; 108(9):1867-1880. PubMed ID: 32297468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and characterization of hydroxyapatite/β-TCP/chitosan composites for tissue engineering applications.
    Shavandi A; Bekhit Ael-D; Ali MA; Sun Z; Gould M
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():481-93. PubMed ID: 26249618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass.
    Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD
    J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds.
    Houmard M; Fu Q; Genet M; Saiz E; Tomsia AP
    J Biomed Mater Res B Appl Biomater; 2013 Oct; 101(7):1233-42. PubMed ID: 23650043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite Obtained via the Wet Precipitation Method and PVP/PVA Matrix as Components of Polymer-Ceramic Composites for Biomedical Applications.
    Głąb M; Kudłacik-Kramarczyk S; Drabczyk A; Walter J; Kordyka A; Godzierz M; Bogucki R; Tyliszczak B; Sobczak-Kupiec A
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between calcium carbonate and β-tricalcium phosphate as additives of 3D printed scaffolds with polylactic acid matrix.
    Donate R; Monzón M; Ortega Z; Wang L; Ribeiro V; Pestana D; Oliveira JM; Reis RL
    J Tissue Eng Regen Med; 2020 Feb; 14(2):272-283. PubMed ID: 31733089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration.
    Torres AL; Gaspar VM; Serra IR; Diogo GS; Fradique R; Silva AP; Correia IJ
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4460-9. PubMed ID: 23910366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of porous HAp and β-TCP scaffolds by starch consolidation with foaming method and drug-chitosan bilayered scaffold based drug delivery system.
    Kundu B; Lemos A; Soundrapandian C; Sen PS; Datta S; Ferreira JM; Basu D
    J Mater Sci Mater Med; 2010 Nov; 21(11):2955-69. PubMed ID: 20644982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder.
    Wu CC; Yang KC; Yang SH; Lin MH; Kuo TF; Lin FH
    Artif Organs; 2012 Apr; 36(4):418-28. PubMed ID: 22145803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.