BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28869436)

  • 1. Design and analysis of a novel fall prevention device for lower limbs rehabilitation robot.
    Ji J; Guo S; Song T; Xi FJ
    J Back Musculoskelet Rehabil; 2018 Feb; 31(1):169-176. PubMed ID: 28869436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics and adaptive strategies linked with falls in stroke survivors from analysis of laboratory-induced falls.
    Honeycutt CF; Nevisipour M; Grabiner MD
    J Biomech; 2016 Oct; 49(14):3313-3319. PubMed ID: 27614614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An overview of robotic/mechanical devices for post-stroke thumb rehabilitation.
    Suarez-Escobar M; Rendon-Velez E
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):683-703. PubMed ID: 29334274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of exercise training effect with different robotic devices for upper limb rehabilitation: a retrospective study.
    Colombo R; Pisano F; Delconte C; Mazzone A; Grioni G; Castagna M; Bazzini G; Imarisio C; Maggioni G; Pistarini C
    Eur J Phys Rehabil Med; 2017 Apr; 53(2):240-248. PubMed ID: 27676203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities.
    Eiammanussakul T; Sangveraphunsiri V
    J Healthc Eng; 2018; 2018():1927807. PubMed ID: 29808109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trunk biomechanics during walking after sub-acute stroke and its relation to lower limb impairments.
    Tamaya VC; Wim S; Herssens N; Van de Walle P; Willem H; Steven T; Ann H
    Clin Biomech (Bristol, Avon); 2020 May; 75():105013. PubMed ID: 32335468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym.
    Bustamante Valles K; Montes S; Madrigal Mde J; Burciaga A; Martínez ME; Johnson MJ
    J Neuroeng Rehabil; 2016 Sep; 13(1):83. PubMed ID: 27634471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered trunk position sense and its relation to balance functions in people post-stroke.
    Ryerson S; Byl NN; Brown DA; Wong RA; Hidler JM
    J Neurol Phys Ther; 2008 Mar; 32(1):14-20. PubMed ID: 18463551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilot trial of distributed constraint-induced therapy with trunk restraint to improve poststroke reach to grasp and trunk kinematics.
    Wu CY; Chen YA; Chen HC; Lin KC; Yeh IL
    Neurorehabil Neural Repair; 2012; 26(3):247-55. PubMed ID: 21903975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical utility of the modified trunk impairment scale for stroke survivors.
    Lee Y; An S; Lee G
    Disabil Rehabil; 2018 May; 40(10):1200-1205. PubMed ID: 28637127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematics optimization and static analysis of a modular continuum robot used for minimally invasive surgery.
    Qi F; Ju F; Bai DM; Chen B
    Proc Inst Mech Eng H; 2018 Feb; 232(2):135-148. PubMed ID: 29228866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke.
    Pila O; Duret C; Laborne FX; Gracies JM; Bayle N; Hutin E
    J Neuroeng Rehabil; 2017 Oct; 14(1):105. PubMed ID: 29029633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research of the BWS system for lower extremity rehabilitation robot.
    Zhang X; Li W; Li J; Cai X
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():240-245. PubMed ID: 28813825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: exploration of patient/robot interactions and the motor recovery process.
    Duret C; Courtial O; Grosmaire AG; Hutin E
    Biomed Res Int; 2015; 2015():482389. PubMed ID: 25821804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of dynamic movement orthoses to improve gait stability and trunk control in ataxic patients.
    Serrao M; Casali C; Ranavolo A; Mari S; Conte C; Chini G; Leonardi L; Coppola G; DI Lorenzo C; Harfoush M; Padua L; Pierelli F
    Eur J Phys Rehabil Med; 2017 Oct; 53(5):735-743. PubMed ID: 28627859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke.
    Li L; Ding L; Chen N; Mao Y; Huang D; Li L
    Biomed Mater Eng; 2015; 26 Suppl 1():S329-40. PubMed ID: 26406020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent and Predictive Validity of Arm Kinematics With and Without a Trunk Restraint During a Reaching Task in Individuals With Stroke.
    Li KY; Lin KC; Chen CK; Liing RJ; Wu CY; Chang WY
    Arch Phys Med Rehabil; 2015 Sep; 96(9):1666-75. PubMed ID: 25940684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper limb robot-assisted therapy in subacute and chronic stroke patients using an innovative end-effector haptic device: A pilot study.
    Mazzoleni S; Battini E; Crecchi R; Dario P; Posteraro F
    NeuroRehabilitation; 2018; 42(1):43-52. PubMed ID: 29400670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of treatment with a kinaesthetic ability training device on balance and mobility after stroke: a randomized controlled study.
    Alptekin N; Gok H; Geler-Kulcu D; Dincer G
    Clin Rehabil; 2008; 22(10-11):922-30. PubMed ID: 18955424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.