These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 28869513)

  • 1. Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?
    Macias VM; Ohm JR; Rasgon JL
    Int J Environ Res Public Health; 2017 Sep; 14(9):. PubMed ID: 28869513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility.
    North AR; Burt A; Godfray HCJ
    BMC Biol; 2020 Aug; 18(1):98. PubMed ID: 32782000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene drives to fight malaria: current state and future directions.
    Hammond AM; Galizi R
    Pathog Glob Health; 2017 Dec; 111(8):412-423. PubMed ID: 29457956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transforming malaria prevention and control: the prospects and challenges of gene drive technology for mosquito management.
    Tajudeen YA; Oladipo HJ; Oladunjoye IO; Oladipo MK; Shittu HD; Abdulmumeen IF; Afolabi AO; El-Sherbini MS
    Ann Med; 2023; 55(2):2302504. PubMed ID: 38232762
    [No Abstract]   [Full Text] [Related]  

  • 5. CRISPR-Accelerated Gene Drives Pump the Brakes.
    LeMieux J
    CRISPR J; 2019 Aug; 2():196-198. PubMed ID: 31436503
    [No Abstract]   [Full Text] [Related]  

  • 6. Informed consent and community engagement in open field research: lessons for gene drive science.
    Singh JA
    BMC Med Ethics; 2019 Jul; 20(1):54. PubMed ID: 31351474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MGDrivE 3: A decoupled vector-human framework for epidemiological simulation of mosquito genetic control tools and their surveillance.
    Mondal A; Sánchez C HM; Marshall JM
    PLoS Comput Biol; 2024 May; 20(5):e1012133. PubMed ID: 38805562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoes.
    Feng X; López Del Amo V; Mameli E; Lee M; Bishop AL; Perrimon N; Gantz VM
    Nat Commun; 2021 May; 12(1):2960. PubMed ID: 34017003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of malaria-transmitting mosquitoes using gene drives.
    Nolan T
    Philos Trans R Soc Lond B Biol Sci; 2021 Feb; 376(1818):20190803. PubMed ID: 33357060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospects and Pitfalls: Next-Generation Tools to Control Mosquito-Transmitted Disease.
    Caragata EP; Dong S; Dong Y; Simões ML; Tikhe CV; Dimopoulos G
    Annu Rev Microbiol; 2020 Sep; 74():455-475. PubMed ID: 32905752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symbionts and gene drive: two strategies to combat vector-borne disease.
    Wang GH; Du J; Chu CY; Madhav M; Hughes GL; Champer J
    Trends Genet; 2022 Jul; 38(7):708-723. PubMed ID: 35314082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Effector and Gene-Drive Developments to Engineer Arbovirus-Resistant Aedes aegypti (Diptera: Culicidae) for a Sustainable Population Replacement Strategy in the Field.
    Reid WR; Olson KE; Franz AWE
    J Med Entomol; 2021 Sep; 58(5):1987-1996. PubMed ID: 33704462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene drives gaining speed.
    Bier E
    Nat Rev Genet; 2022 Jan; 23(1):5-22. PubMed ID: 34363067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic approaches to interfere with malaria transmission by vector mosquitoes.
    Wang S; Jacobs-Lorena M
    Trends Biotechnol; 2013 Mar; 31(3):185-93. PubMed ID: 23395485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population replacement gene drive characteristics for malaria elimination in a range of seasonal transmission settings: a modelling study.
    Leung S; Windbichler N; Wenger EA; Bever CA; Selvaraj P
    Malar J; 2022 Jul; 21(1):226. PubMed ID: 35883100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next-generation gene drive for population modification of the malaria vector mosquito,
    Carballar-Lejarazú R; Ogaugwu C; Tushar T; Kelsey A; Pham TB; Murphy J; Schmidt H; Lee Y; Lanzaro GC; James AA
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22805-22814. PubMed ID: 32839345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population modification of Anopheline species to control malaria transmission.
    Carballar-Lejarazú R; James AA
    Pathog Glob Health; 2017 Dec; 111(8):424-435. PubMed ID: 29385893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement.
    Hoermann A; Tapanelli S; Capriotti P; Del Corsano G; Masters EK; Habtewold T; Christophides GK; Windbichler N
    Elife; 2021 Apr; 10():. PubMed ID: 33845943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution in situ analysis of Cas9 germline transcript distributions in gene-drive Anopheles mosquitoes.
    Terradas G; Hermann A; James AA; McGinnis W; Bier E
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34791161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress towards engineering gene drives for population control.
    Raban RR; Marshall JM; Akbari OS
    J Exp Biol; 2020 Feb; 223(Pt Suppl 1):. PubMed ID: 32034041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.