These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28869559)

  • 1. Relationship between Degree of Deformation in Quartz and Silica Dissolution for the Development of Alkali-Silica Reaction in Concrete.
    Tiecher F; Gomes MEB; Dal Molin DCC; Hasparyk NP; Monteiro PJM
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28869559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the Quartz Deformation Structures for the Occurrence of the Alkali⁻Silica Reaction.
    Tiecher F; Florindo RN; Vieira GL; Gomes MEB; Dal Molin DCC; Lermen RT
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30213064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkali-Silica Reactivity of High Density Aggregates for Radiation Shielding Concrete.
    Jóźwiak-Niedźwiedzka D; Glinicki MA; Gibas K; Baran T
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30445670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Alkali-Silica Reactivity of Aggregates by Concrete Expansion Tests in Alkaline Solutions at 38 °C.
    Bavasso I; Costa U; Mangialardi T; Paolini AE
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resolution transmission soft X-ray microscopy of deterioration products developed in large concrete dams.
    Kurtis KE; Monteiro PJ; Brown JT; Meyer-Ilse W
    J Microsc; 1999 Dec; 196 (Pt 3)():288-98. PubMed ID: 10594769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Alkali-Silica Reaction Potential in Aggregates from Iran and Australia Using Thin-Section Petrography and Expansion Testing.
    Kazemi P; Nikudel MR; Khamehchiyan M; Giri P; Taheri S; Clark SM
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Image Analysis to Identify Quartz Grains in Heavy Aggregates Susceptible to ASR in Radiation Shielding Concrete.
    Jóźwiak-Niedźwiedzka D; Jaskulski R; Glinicki MA
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review on Alkali-Silica Reaction Evolution in Recycled Aggregate Concrete.
    Barreto Santos M; De Brito J; Santos Silva A
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32526866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Microstructure Simulation of Reactive Aggregate in Concrete from 2D Images as the Basis for ASR Simulation.
    Qiu X; Chen J; Deprez M; Cnudde V; Ye G; De Schutter G
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkali Release from Aggregates in Long-Service Concrete Structures: Laboratory Test Evaluation and ASR Prediction.
    Berra M; Mangialardi T; Paolini AE
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30096924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of Alkali-Silica Reaction: Application to Sandstone.
    Yang Y; Deng M; Mo L; Li W
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The presence of ettringite in concrete affected by alkali-silica reaction and its potential use as recycled aggregate.
    Piersanti M; Shehata MH
    J Microsc; 2022 May; 286(2):168-173. PubMed ID: 35218226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of Glaukonite Sandstone as a Result of Alkali-Silica Reactions in Cement Mortar.
    Czapik P
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29848958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quartzite Mining Waste: Diagnosis of ASR Alkali-Silica Reaction in Mortars and Portland Cement Concrete.
    Francklin I; Ribeiro RP; Corrêa FA
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction of quartz glass in lithium-containing alkaline solutions with or without Ca.
    Zhou B; Mao Z; Deng M
    R Soc Open Sci; 2018 Sep; 5(9):180797. PubMed ID: 30839681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopy and Cathodoluminescence Spectroscopy Characterization of Quartz Exhibiting Different Alkali-Silica Reaction Potential.
    Kuchařová A; Götze J; Šachlová Š; Pertold Z; Přikryl R
    Microsc Microanal; 2016 Feb; 22(1):189-98. PubMed ID: 26790877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respirable concrete dust--silicosis hazard in the construction industry.
    Linch KD
    Appl Occup Environ Hyg; 2002 Mar; 17(3):209-21. PubMed ID: 11871757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SBA-15 with Crystalline Walls Produced via Thermal Treatment with the Alkali and Alkali Earth Metal Ions.
    Park SS; Chu SW; Shi L; Yuan S; Ha CS
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Test Method for Evaluating Inhibiting Effectiveness of Supplementary Cementitious Materials on Alkali-Silica Reaction Expansion of Concrete.
    Yi L; Mao Z; Deng M; Liu X; Fan Z; Huang X; Zhang T; Tang M
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of LiNO₃ on Expansion of Alkali⁻Silica Reaction in Rock Prisms and Concrete Microbars Prepared by Sandstone.
    Liu J; Yu L; Deng M
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30970596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.