BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28869620)

  • 1. The influence of the cumulated deformation energy in the measurement by the DSI method on the selected mechanical properties of bone tissues.
    Makuch AM; Skalski KR; Pawlikowski M
    Acta Bioeng Biomech; 2017; 19(2):79-91. PubMed ID: 28869620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human cancellous bone mechanical properties and penetrator geometry in nanoindentation tests.
    Makuch AM; Skalski KR
    Acta Bioeng Biomech; 2018; 20(4):153-164. PubMed ID: 30520440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Young׳s modulus of trabeculae in microscale using macro-scale׳s relationships between bone density and mechanical properties.
    Cyganik Ł; Binkowski M; Kokot G; Rusin T; Popik P; Bolechała F; Nowak R; Wróbel Z; John A
    J Mech Behav Biomed Mater; 2014 Aug; 36():120-34. PubMed ID: 24837330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical analysis and multi-scale modelling of rat cortical and trabecular bone.
    Oftadeh R; Entezari V; Spörri G; Villa-Camacho JC; Krigbaum H; Strawich E; Graham L; Rey C; Chiu H; Müller R; Hashemi HN; Vaziri A; Nazarian A
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25808343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A numerical study on indentation properties of cortical bone tissue: influence of anisotropy.
    Demiral M; Abdel-Wahab A; Silberschmidt V
    Acta Bioeng Biomech; 2015; 17(2):3-14. PubMed ID: 26399190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental testing and constitutive modeling of the mechanical properties of the swine skin tissue.
    Łagan SD; Liber-Kneć A
    Acta Bioeng Biomech; 2017; 19(2):93-102. PubMed ID: 28869629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indentation versus tensile measurements of Young's modulus for soft biological tissues.
    McKee CT; Last JA; Russell P; Murphy CJ
    Tissue Eng Part B Rev; 2011 Jun; 17(3):155-64. PubMed ID: 21303220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micromechanical properties of human trabecular bone: a hierarchical investigation using nanoindentation.
    Norman J; Shapter JG; Short K; Smith LJ; Fazzalari NL
    J Biomed Mater Res A; 2008 Oct; 87(1):196-202. PubMed ID: 18085652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-rate stiffening of cortical bone: observations and implications from nanoindentation experiments.
    Maruyama N; Shibata Y; Wurihan ; Swain MV; Kataoka Y; Takiguchi Y; Yamada A; Maki K; Miyazaki T
    Nanoscale; 2014 Dec; 6(24):14863-71. PubMed ID: 25363088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of some external factors on the values of mechanical parameters determined in tests on bone tissue.
    Nikodem A; Scigała K
    Acta Bioeng Biomech; 2010; 12(3):85-93. PubMed ID: 21247055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationships between femoral cortex geometry and tissue mechanical properties.
    Yeni YN; Brown CU; Gruen TA; Norman TL
    J Mech Behav Biomed Mater; 2013 May; 21():9-16. PubMed ID: 23454364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of loading conditions and specimen environment on the nanomechanical response of canine cortical bone.
    Lee KL; Sobieraj M; Baldassarri M; Gupta N; Pinisetty D; Janal MN; Tovar N; Coelho PG
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4582-6. PubMed ID: 24094163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of mechanical properties of human trabecular bone by electrical measurements.
    Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Jurvelin JS; Lappalainen R
    Physiol Meas; 2005 Apr; 26(2):S119-31. PubMed ID: 15798225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between the mineral content of human trabecular bone and selected parameters determined from fatigue test at stepwise-increasing amplitude.
    Mazurkiewicz A; Topoliński T
    Acta Bioeng Biomech; 2017; 19(3):19-26. PubMed ID: 29205222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue properties of the human vertebral body sub-structures evaluated by means of microindentation.
    Dall'Ara E; Karl C; Mazza G; Franzoso G; Vena P; Pretterklieber M; Pahr D; Zysset P
    J Mech Behav Biomed Mater; 2013 Sep; 25():23-32. PubMed ID: 23726926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indentation size effect of cortical bones submitted to different soft tissue removals.
    Bandini A; Chicot D; Berry P; Decoopman X; Pertuz A; Ojeda D
    J Mech Behav Biomed Mater; 2013 Apr; 20():338-46. PubMed ID: 23517774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An application of nanoindentation technique to measure bone tissue Lamellae properties.
    Hoffler CE; Guo XE; Zysset PK; Goldstein SA
    J Biomech Eng; 2005 Dec; 127(7):1046-53. PubMed ID: 16502646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental study on the biomechanical properties of the cancellous bones of distal femur.
    Du C; Ma H; Ruo M; Zhang Z; Yu X; Zeng Y
    Biomed Mater Eng; 2006; 16(3):215-22. PubMed ID: 16518020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range.
    Hakulinen MA; Day JS; Töyräs J; Timonen M; Kröger H; Weinans H; Kiviranta I; Jurvelin JS
    Phys Med Biol; 2005 Apr; 50(8):1629-42. PubMed ID: 15815086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.