BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 28869629)

  • 1. Experimental testing and constitutive modeling of the mechanical properties of the swine skin tissue.
    Łagan SD; Liber-Kneć A
    Acta Bioeng Biomech; 2017; 19(2):93-102. PubMed ID: 28869629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A; Navidbakhsh M
    Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: a review.
    Wex C; Arndt S; Stoll A; Bruns C; Kupriyanova Y
    Biomed Tech (Berl); 2015 Dec; 60(6):577-92. PubMed ID: 26087063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-parameter optimisation of the elastic properties of skin.
    Delalleau A; Josse G; Lagarde JM
    Comput Methods Biomech Biomed Engin; 2012; 15(1):83-92. PubMed ID: 22136230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liver tissue characterization from uniaxial stress-strain data using probabilistic and inverse finite element methods.
    Fu YB; Chui CK; Teo CL
    J Mech Behav Biomed Mater; 2013 Apr; 20():105-12. PubMed ID: 23455167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of the cumulated deformation energy in the measurement by the DSI method on the selected mechanical properties of bone tissues.
    Makuch AM; Skalski KR; Pawlikowski M
    Acta Bioeng Biomech; 2017; 19(2):79-91. PubMed ID: 28869620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain rate sensitivity of skin tissue under thermomechanical loading.
    Zhou B; Xu F; Chen CQ; Lu TJ
    Philos Trans A Math Phys Eng Sci; 2010 Feb; 368(1912):679-90. PubMed ID: 20047945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating material parameters of human skin in vivo.
    Kvistedal YA; Nielsen PM
    Biomech Model Mechanobiol; 2009 Feb; 8(1):1-8. PubMed ID: 18040732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of common hyperelastic constitutive equations for describing normal and osteoarthritic articular cartilage.
    Brown CP; Nguyen TC; Moody HR; Crawford RW; Oloyede A
    Proc Inst Mech Eng H; 2009 Aug; 223(6):643-52. PubMed ID: 19743631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the uniaxial mechanical properties of rat skin using different stress-strain definitions.
    Karimi A; Navidbakhsh M
    Skin Res Technol; 2015 May; 21(2):149-57. PubMed ID: 25078795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo measurements and numerical analysis of the biomechanical characteristics of the human periodontal ligament.
    Keilig L; Drolshagen M; Tran KL; Hasan I; Reimann S; Deschner J; Brinkmann KT; Krause R; Favino M; Bourauel C
    Ann Anat; 2016 Jul; 206():80-8. PubMed ID: 26395824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study on the uniaxial mechanical properties of the umbilical vein and umbilical artery using different stress-strain definitions.
    Karimi A; Navidbakhsh M
    Australas Phys Eng Sci Med; 2014 Dec; 37(4):645-54. PubMed ID: 25151140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the axial and circumferential mechanical properties of rat skin tissue at different anatomical locations.
    Karimi A; Haghighatnama M; Navidbakhsh M; Haghi AM
    Biomed Tech (Berl); 2015 Apr; 60(2):115-22. PubMed ID: 25389978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indentation versus tensile measurements of Young's modulus for soft biological tissues.
    McKee CT; Last JA; Russell P; Murphy CJ
    Tissue Eng Part B Rev; 2011 Jun; 17(3):155-64. PubMed ID: 21303220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperelastic behavior of porcine aorta segment under extension-inflation tests fitted with various phenomenological models.
    Veljković DŽ; Ranković VJ; Pantović SB; Rosić MA; Kojić MR
    Acta Bioeng Biomech; 2014; 16(3):37-45. PubMed ID: 25308095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the mechanical response of in vivo human skin under a rich set of deformations.
    Flynn C; Taberner A; Nielsen P
    Ann Biomed Eng; 2011 Jul; 39(7):1935-46. PubMed ID: 21394556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element prediction of transchondral stress and strain in the human hip.
    Henak CR; Ateshian GA; Weiss JA
    J Biomech Eng; 2014 Feb; 136(2):021021. PubMed ID: 24292495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data.
    Fu YB; Chui CK
    J Biomech; 2014 Jul; 47(10):2430-5. PubMed ID: 24811044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forces and deformations of the abdominal wall--a mechanical and geometrical approach to the linea alba.
    Förstemann T; Trzewik J; Holste J; Batke B; Konerding MA; Wolloscheck T; Hartung C
    J Biomech; 2011 Feb; 44(4):600-6. PubMed ID: 21130459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.