These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 28869701)
1. Nup42 and IP Adams RL; Mason AC; Glass L; Aditi ; Wente SR Traffic; 2017 Dec; 18(12):776-790. PubMed ID: 28869701 [TBL] [Abstract][Full Text] [Related]
2. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Alcázar-Román AR; Tran EJ; Guo S; Wente SR Nat Cell Biol; 2006 Jul; 8(7):711-6. PubMed ID: 16783363 [TBL] [Abstract][Full Text] [Related]
3. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Weirich CS; Erzberger JP; Flick JS; Berger JM; Thorner J; Weis K Nat Cell Biol; 2006 Jul; 8(7):668-76. PubMed ID: 16783364 [TBL] [Abstract][Full Text] [Related]
4. Nucleoporin FG domains facilitate mRNP remodeling at the cytoplasmic face of the nuclear pore complex. Adams RL; Terry LJ; Wente SR Genetics; 2014 Aug; 197(4):1213-24. PubMed ID: 24931410 [TBL] [Abstract][Full Text] [Related]
5. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Montpetit B; Thomsen ND; Helmke KJ; Seeliger MA; Berger JM; Weis K Nature; 2011 Apr; 472(7342):238-42. PubMed ID: 21441902 [TBL] [Abstract][Full Text] [Related]
6. The Dbp5 cycle at the nuclear pore complex during mRNA export I: dbp5 mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1. Hodge CA; Tran EJ; Noble KN; Alcazar-Roman AR; Ben-Yishay R; Scarcelli JJ; Folkmann AW; Shav-Tal Y; Wente SR; Cole CN Genes Dev; 2011 May; 25(10):1052-64. PubMed ID: 21576265 [TBL] [Abstract][Full Text] [Related]
7. Control of mRNA export and translation termination by inositol hexakisphosphate requires specific interaction with Gle1. Alcázar-Román AR; Bolger TA; Wente SR J Biol Chem; 2010 May; 285(22):16683-92. PubMed ID: 20371601 [TBL] [Abstract][Full Text] [Related]
8. The Dbp5 cycle at the nuclear pore complex during mRNA export II: nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1. Noble KN; Tran EJ; Alcázar-Román AR; Hodge CA; Cole CN; Wente SR Genes Dev; 2011 May; 25(10):1065-77. PubMed ID: 21576266 [TBL] [Abstract][Full Text] [Related]
9. Dbp5, Gle1-IP6 and Nup159: a working model for mRNP export. Folkmann AW; Noble KN; Cole CN; Wente SR Nucleus; 2011; 2(6):540-8. PubMed ID: 22064466 [TBL] [Abstract][Full Text] [Related]
10. Structural and functional analysis of mRNA export regulation by the nuclear pore complex. Lin DH; Correia AR; Cai SW; Huber FM; Jette CA; Hoelz A Nat Commun; 2018 Jun; 9(1):2319. PubMed ID: 29899397 [TBL] [Abstract][Full Text] [Related]
11. Structure of the C-terminus of the mRNA export factor Dbp5 reveals the interaction surface for the ATPase activator Gle1. Dossani ZY; Weirich CS; Erzberger JP; Berger JM; Weis K Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16251-6. PubMed ID: 19805289 [TBL] [Abstract][Full Text] [Related]
12. Depletion of mRNA export regulator DBP5/DDX19, GLE1 or IPPK that is a key enzyme for the production of IP6, resulting in differentially altered cytoplasmic mRNA expression and specific cell defect. Okamura M; Yamanaka Y; Shigemoto M; Kitadani Y; Kobayashi Y; Kambe T; Nagao M; Kobayashi I; Okumura K; Masuda S PLoS One; 2018; 13(5):e0197165. PubMed ID: 29746542 [TBL] [Abstract][Full Text] [Related]
13. Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1-mRNA export pathway. Miller AL; Suntharalingam M; Johnson SL; Audhya A; Emr SD; Wente SR J Biol Chem; 2004 Dec; 279(49):51022-32. PubMed ID: 15459192 [TBL] [Abstract][Full Text] [Related]
14. The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Tran EJ; Zhou Y; Corbett AH; Wente SR Mol Cell; 2007 Dec; 28(5):850-9. PubMed ID: 18082609 [TBL] [Abstract][Full Text] [Related]
15. The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation. Bolger TA; Folkmann AW; Tran EJ; Wente SR Cell; 2008 Aug; 134(4):624-33. PubMed ID: 18724935 [TBL] [Abstract][Full Text] [Related]
16. Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export. Neumann B; Wu H; Hackmann A; Krebber H PLoS One; 2016; 11(2):e0149571. PubMed ID: 26872259 [TBL] [Abstract][Full Text] [Related]
17. The nucleoporin Gle1 activates DEAD-box protein 5 (Dbp5) by promoting ATP binding and accelerating rate limiting phosphate release. Gray S; Cao W; Montpetit B; De La Cruz EM Nucleic Acids Res; 2022 Apr; 50(7):3998-4011. PubMed ID: 35286399 [TBL] [Abstract][Full Text] [Related]
18. The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Weirich CS; Erzberger JP; Berger JM; Weis K Mol Cell; 2004 Dec; 16(5):749-60. PubMed ID: 15574330 [TBL] [Abstract][Full Text] [Related]
19. Nuclear export of the yeast mRNA-binding protein Nab2 is linked to a direct interaction with Gfd1 and to Gle1 function. Suntharalingam M; Alcázar-Román AR; Wente SR J Biol Chem; 2004 Aug; 279(34):35384-91. PubMed ID: 15208322 [TBL] [Abstract][Full Text] [Related]
20. Dbp5 - from nuclear export to translation. Tieg B; Krebber H Biochim Biophys Acta; 2013 Aug; 1829(8):791-8. PubMed ID: 23128325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]