BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28869704)

  • 1. Eliminating glutaraldehyde from crosslinked collagen films using supercritical CO
    Casali DM; Yost MJ; Matthews MA
    J Biomed Mater Res A; 2018 Jan; 106(1):86-94. PubMed ID: 28869704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen fibers constructed by gravity filament forming process.
    Tung FI; Chiu CT; Chang YP; Wang YJ
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Oct; 39(5):335-40. PubMed ID: 21557701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wet spinning and riboflavin crosslinking of collagen type I/III filaments.
    Tonndorf R; Gossla E; Aibibu D; Lindner M; Gelinsky M; Cherif C
    Biomed Mater; 2018 Nov; 14(1):015007. PubMed ID: 30421723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Riboflavin-ultraviolet-A-induced collagen cross-linking treatments in improving dentin bonding.
    Chiang YS; Chen YL; Chuang SF; Wu CM; Wei PJ; Han CF; Lin JC; Chang HT
    Dent Mater; 2013 Jun; 29(6):682-92. PubMed ID: 23582694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis.
    Gough JE; Scotchford CA; Downes S
    J Biomed Mater Res; 2002 Jul; 61(1):121-30. PubMed ID: 12001254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous hydrogels from shark skin collagen crosslinked under dense carbon dioxide atmosphere.
    Fernandes-Silva S; Moreira-Silva J; Silva TH; Perez-Martin RI; Sotelo CG; Mano JF; Duarte AR; Reis RL
    Macromol Biosci; 2013 Nov; 13(11):1621-31. PubMed ID: 24039034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of sterilization and crosslinking on gelatin films.
    Amadori S; Torricelli P; Rubini K; Fini M; Panzavolta S; Bigi A
    J Mater Sci Mater Med; 2015 Feb; 26(2):69. PubMed ID: 25631265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photomediated crosslinking of C6-cinnamate derivatized type I collagen.
    Dong CM; Wu X; Caves J; Rele SS; Thomas BS; Chaikof EL
    Biomaterials; 2005 Jun; 26(18):4041-9. PubMed ID: 15626450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of decellularized vascular matrix by co-crosslinking of procyanidins and glutaraldehyde.
    Wang X; Ma B; Chang J
    Biomed Mater Eng; 2015; 26(1-2):19-30. PubMed ID: 26484552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxic evaluation of biomechanically improved crosslinked ovine collagen on human dermal fibroblasts.
    Awang MA; Firdaus MA; Busra MB; Chowdhury SR; Fadilah NR; Wan Hamirul WK; Reusmaazran MY; Aminuddin MY; Ruszymah BH
    Biomed Mater Eng; 2014; 24(4):1715-24. PubMed ID: 24948455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci.
    Gao S; Yuan Z; Guo W; Chen M; Liu S; Xi T; Guo Q
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():891-900. PubMed ID: 27987786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical and mechanical properties of cross-linked type I collagen scaffolds derived from bovine, porcine, and ovine tendons.
    Ghodbane SA; Dunn MG
    J Biomed Mater Res A; 2016 Nov; 104(11):2685-92. PubMed ID: 27325579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions.
    Duan X; Sheardown H
    Biomaterials; 2006 Sep; 27(26):4608-17. PubMed ID: 16713624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evaluation of Ficoll-enriched and genipin-stabilised collagen scaffolds.
    Satyam A; Subramanian GS; Raghunath M; Pandit A; Zeugolis DI
    J Tissue Eng Regen Med; 2014 Mar; 8(3):233-41. PubMed ID: 22552937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemical cross-linking for collagen-based scaffolds: a study on optical properties, mechanical properties, stability, and hematocompatibility.
    Chan BP; Hui TY; Chan OC; So KF; Lu W; Cheung KM; Salomatina E; Yaroslavsky A
    Tissue Eng; 2007 Jan; 13(1):73-85. PubMed ID: 17518582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional infrared spectroscopic study on the thermally induced structural changes of glutaraldehyde-crosslinked collagen.
    Tian Z; Wu K; Liu W; Shen L; Li G
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():356-63. PubMed ID: 25617846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved cellular response of chemically crosslinked collagen incorporated hydroxyethyl cellulose/poly(vinyl) alcohol nanofibers scaffold.
    Zulkifli FH; Jahir Hussain FS; Abdull Rasad MS; Mohd Yusoff M
    J Biomater Appl; 2015 Feb; 29(7):1014-27. PubMed ID: 25186524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chemical protecting group concept applied in crosslinking of natural tissues with glutaraldehyde acetals.
    Goissis G; Yoshioka SA; Braile DM; Ramirez VD
    Artif Organs; 1998 Mar; 22(3):210-4. PubMed ID: 9527281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salmon skin gelatin-corn zein composite films produced via crosslinking with glutaraldehyde: Optimization using response surface methodology and characterization.
    Fan HY; Duquette D; Dumont MJ; Simpson BK
    Int J Biol Macromol; 2018 Dec; 120(Pt A):263-273. PubMed ID: 30130612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The influences of cross-linking agent on the composite bio-sponge].
    Li D; Li P; Luo J; Huang L
    Zhongguo Yi Liao Qi Xie Za Zhi; 2012 Sep; 36(5):317-20. PubMed ID: 23289331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.