BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 28870104)

  • 21. Influenza virus resistance to antiviral therapy.
    van der Vries E; Schutten M; Fraaij P; Boucher C; Osterhaus A
    Adv Pharmacol; 2013; 67():217-46. PubMed ID: 23886002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug Repurposing Approaches for the Treatment of Influenza Viral Infection: Reviving Old Drugs to Fight Against a Long-Lived Enemy.
    Pizzorno A; Padey B; Terrier O; Rosa-Calatrava M
    Front Immunol; 2019; 10():531. PubMed ID: 30941148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitors of influenza viruses replication: a patent evaluation (WO2013019828).
    Xie Y; Song W; Xiao W; Gu C; Xu W
    Expert Opin Ther Pat; 2013 Nov; 23(11):1517-24. PubMed ID: 23967861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part II: Future compounds against influenza virus.
    Gasparini R; Amicizia D; Lai PL; Bragazzi NL; Panatto D
    J Prev Med Hyg; 2014 Dec; 55(4):109-29. PubMed ID: 26137785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel insights into proteolytic cleavage of influenza virus hemagglutinin.
    Bertram S; Glowacka I; Steffen I; Kühl A; Pöhlmann S
    Rev Med Virol; 2010 Sep; 20(5):298-310. PubMed ID: 20629046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel type II transmembrane serine proteases, MSPL and TMPRSS13, Proteolytically activate membrane fusion activity of the hemagglutinin of highly pathogenic avian influenza viruses and induce their multicycle replication.
    Okumura Y; Takahashi E; Yano M; Ohuchi M; Daidoji T; Nakaya T; Böttcher E; Garten W; Klenk HD; Kido H
    J Virol; 2010 May; 84(10):5089-96. PubMed ID: 20219906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent progress in designing inhibitors that target the drug-resistant M2 proton channels from the influenza A viruses.
    Wang J; Li F; Ma C
    Biopolymers; 2015 Jul; 104(4):291-309. PubMed ID: 25663018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kallistatin ameliorates influenza virus pathogenesis by inhibition of kallikrein-related peptidase 1-mediated cleavage of viral hemagglutinin.
    Leu CH; Yang ML; Chung NH; Huang YJ; Su YC; Chen YC; Lin CC; Shieh GS; Chang MY; Wang SW; Chang Y; Chao J; Chao L; Wu CL; Shiau AL
    Antimicrob Agents Chemother; 2015 Sep; 59(9):5619-30. PubMed ID: 26149981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influenza chemotherapy: a review of the present state of art and of new drugs in development.
    Lüscher-Mattli M
    Arch Virol; 2000; 145(11):2233-48. PubMed ID: 11205114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antiviral activity of the proteasome inhibitor VL-01 against influenza A viruses.
    Haasbach E; Pauli EK; Spranger R; Mitzner D; Schubert U; Kircheis R; Planz O
    Antiviral Res; 2011 Sep; 91(3):304-13. PubMed ID: 21777621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Approaches and strategies for the treatment of influenza virus infections.
    Colacino JM; Staschke KA; Laver WG
    Antivir Chem Chemother; 1999 Jul; 10(4):155-85. PubMed ID: 10480736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MDCK cells that express proteases TMPRSS2 and HAT provide a cell system to propagate influenza viruses in the absence of trypsin and to study cleavage of HA and its inhibition.
    Böttcher E; Freuer C; Steinmetzer T; Klenk HD; Garten W
    Vaccine; 2009 Oct; 27(45):6324-9. PubMed ID: 19840668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in pharmacophore modeling and its application to anti-influenza drug discovery.
    Shin WJ; Seong BL
    Expert Opin Drug Discov; 2013 Apr; 8(4):411-26. PubMed ID: 23373617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New drug-strategies to tackle viral-host interactions for the treatment of influenza virus infections.
    van de Wakker SI; Fischer MJE; Oosting RS
    Eur J Pharmacol; 2017 Aug; 809():178-190. PubMed ID: 28533172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical Implications of Antiviral Resistance in Influenza.
    Li TC; Chan MC; Lee N
    Viruses; 2015 Sep; 7(9):4929-44. PubMed ID: 26389935
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuraminidase inhibitor resistance in influenza viruses and laboratory testing methods.
    Nguyen HT; Fry AM; Gubareva LV
    Antivir Ther; 2012; 17(1 Pt B):159-73. PubMed ID: 22311680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aprotinin, a protease inhibitor, suppresses proteolytic activation of pandemic H1N1v influenza virus.
    Zhirnov OP; Matrosovich TY; Matrosovich MN; Klenk HD
    Antivir Chem Chemother; 2011 Mar; 21(4):169-74. PubMed ID: 21602614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Guidance for clinical and public health laboratories testing for influenza virus antiviral drug susceptibility in Europe.
    Pozo F; Lina B; Andrade HR; Enouf V; Kossyvakis A; Broberg E; Daniels R; Lackenby A; Meijer A;
    J Clin Virol; 2013 May; 57(1):5-12. PubMed ID: 23375738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antiviral activity of SA-2 against influenza A virus in vitro/vivo and its inhibition of RNA polymerase.
    Yu J; Wang D; Jin J; Xu J; Li M; Wang H; Dou J; Zhou C
    Antiviral Res; 2016 Mar; 127():68-78. PubMed ID: 26802558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From neuraminidase inhibitors to conjugates: a step towards better anti-influenza drugs?
    Cheng CK; Tsai CH; Shie JJ; Fang JM
    Future Med Chem; 2014 May; 6(7):757-74. PubMed ID: 24941871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.