BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 28870380)

  • 1. Active learning reduces annotation time for clinical concept extraction.
    Kholghi M; Sitbon L; Zuccon G; Nguyen A
    Int J Med Inform; 2017 Oct; 106():25-31. PubMed ID: 28870380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active learning: a step towards automating medical concept extraction.
    Kholghi M; Sitbon L; Zuccon G; Nguyen A
    J Am Med Inform Assoc; 2016 Mar; 23(2):289-96. PubMed ID: 26253132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assisted annotation of medical free text using RapTAT.
    Gobbel GT; Garvin J; Reeves R; Cronin RM; Heavirland J; Williams J; Weaver A; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Xu H; Matheny ME
    J Am Med Inform Assoc; 2014; 21(5):833-41. PubMed ID: 24431336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of active learning methods for named entity recognition in clinical text.
    Chen Y; Lasko TA; Mei Q; Denny JC; Xu H
    J Biomed Inform; 2015 Dec; 58():11-18. PubMed ID: 26385377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost-aware active learning for named entity recognition in clinical text.
    Wei Q; Chen Y; Salimi M; Denny JC; Mei Q; Lasko TA; Chen Q; Wu S; Franklin A; Cohen T; Xu H
    J Am Med Inform Assoc; 2019 Nov; 26(11):1314-1322. PubMed ID: 31294792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
    Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME
    J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying active learning to assertion classification of concepts in clinical text.
    Chen Y; Mani S; Xu H
    J Biomed Inform; 2012 Apr; 45(2):265-72. PubMed ID: 22127105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes.
    Steinkamp JM; Bala W; Sharma A; Kantrowitz JJ
    J Biomed Inform; 2020 Feb; 102():103354. PubMed ID: 31838210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating the annotation of sparse named entities by dynamic sentence selection.
    Tsuruoka Y; Tsujii J; Ananiadou S
    BMC Bioinformatics; 2008 Nov; 9 Suppl 11(Suppl 11):S8. PubMed ID: 19025694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leveraging rich annotations to improve learning of medical concepts from clinical free text.
    Yu S; Farooq F; Krishnapuram B; Rao B
    AMIA Annu Symp Proc; 2011; 2011():1603-11. PubMed ID: 22195226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the impact of pre-annotation on annotation speed and potential bias: natural language processing gold standard development for clinical named entity recognition in clinical trial announcements.
    Lingren T; Deleger L; Molnar K; Zhai H; Meinzen-Derr J; Kaiser M; Stoutenborough L; Li Q; Solti I
    J Am Med Inform Assoc; 2014; 21(3):406-13. PubMed ID: 24001514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-automatic semantic annotation of PubMed queries: a study on quality, efficiency, satisfaction.
    Névéol A; Islamaj Doğan R; Lu Z
    J Biomed Inform; 2011 Apr; 44(2):310-8. PubMed ID: 21094696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of GO annotation retrieval for BioCreAtIvE and GOA.
    Camon EB; Barrell DG; Dimmer EC; Lee V; Magrane M; Maslen J; Binns D; Apweiler R
    BMC Bioinformatics; 2005; 6 Suppl 1(Suppl 1):S17. PubMed ID: 15960829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of fine-grained annotations in supervised recognition of risk factors for heart disease from EHRs.
    Roberts K; Shooshan SE; Rodriguez L; Abhyankar S; Kilicoglu H; Demner-Fushman D
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S111-S119. PubMed ID: 26122527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the effects of machine pre-annotation and an interactive annotation interface on manual de-identification of clinical text.
    South BR; Mowery D; Suo Y; Leng J; Ferrández Ó; Meystre SM; Chapman WW
    J Biomed Inform; 2014 Aug; 50():162-72. PubMed ID: 24859155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Text Data in Machine Learning: Systematic Review.
    Spasic I; Nenadic G
    JMIR Med Inform; 2020 Mar; 8(3):e17984. PubMed ID: 32229465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A machine learning based approach to identify protected health information in Chinese clinical text.
    Du L; Xia C; Deng Z; Lu G; Xia S; Ma J
    Int J Med Inform; 2018 Aug; 116():24-32. PubMed ID: 29887232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Community annotation experiment for ground truth generation for the i2b2 medication challenge.
    Uzuner O; Solti I; Xia F; Cadag E
    J Am Med Inform Assoc; 2010; 17(5):519-23. PubMed ID: 20819855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Study of Concept Extraction Across Different Types of Clinical Notes.
    Kim Y; Riloff E; Hurdle JF
    AMIA Annu Symp Proc; 2015; 2015():737-46. PubMed ID: 26958209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MCN: A comprehensive corpus for medical concept normalization.
    Luo YF; Sun W; Rumshisky A
    J Biomed Inform; 2019 Apr; 92():103132. PubMed ID: 30802545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.