These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
738 related articles for article (PubMed ID: 28871110)
21. Combining multimodal imaging and treatment features improves machine learning-based prognostic assessment in patients with glioblastoma multiforme. Peeken JC; Goldberg T; Pyka T; Bernhofer M; Wiestler B; Kessel KA; Tafti PD; Nüsslin F; Braun AE; Zimmer C; Rost B; Combs SE Cancer Med; 2019 Jan; 8(1):128-136. PubMed ID: 30561851 [TBL] [Abstract][Full Text] [Related]
22. A Combined Nomogram Model to Preoperatively Predict Histologic Grade in Pancreatic Neuroendocrine Tumors. Liang W; Yang P; Huang R; Xu L; Wang J; Liu W; Zhang L; Wan D; Huang Q; Lu Y; Kuang Y; Niu T Clin Cancer Res; 2019 Jan; 25(2):584-594. PubMed ID: 30397175 [TBL] [Abstract][Full Text] [Related]
23. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas. Feng B; Chen X; Chen Y; Lu S; Liu K; Li K; Liu Z; Hao Y; Li Z; Zhu Z; Yao N; Liang G; Zhang J; Long W; Liu X Eur Radiol; 2020 Dec; 30(12):6497-6507. PubMed ID: 32594210 [TBL] [Abstract][Full Text] [Related]
24. Development of a nomograph integrating radiomics and deep features based on MRI to predict the prognosis of high grade Gliomas. Wang Y; Shao Q; Luo S; Fu R Math Biosci Eng; 2021 Sep; 18(6):8084-8095. PubMed ID: 34814290 [TBL] [Abstract][Full Text] [Related]
25. Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning. Sanghani P; Ang BT; King NKK; Ren H Surg Oncol; 2018 Dec; 27(4):709-714. PubMed ID: 30449497 [TBL] [Abstract][Full Text] [Related]
26. Development and validation of a radiomics nomogram for identifying invasiveness of pulmonary adenocarcinomas appearing as subcentimeter ground-glass opacity nodules. Zhao W; Xu Y; Yang Z; Sun Y; Li C; Jin L; Gao P; He W; Wang P; Shi H; Hua Y; Li M Eur J Radiol; 2019 Mar; 112():161-168. PubMed ID: 30777206 [TBL] [Abstract][Full Text] [Related]
27. A quantitative study of shape descriptors from glioblastoma multiforme phenotypes for predicting survival outcome. Chaddad A; Desrosiers C; Hassan L; Tanougast C Br J Radiol; 2016 Dec; 89(1068):20160575. PubMed ID: 27781499 [TBL] [Abstract][Full Text] [Related]
28. Prognostic Value of a Combined Nomogram Model Integrating 3-Dimensional Deep Learning and Radiomics for Head and Neck Cancer. Li S; Xie J; Liu J; Wu Y; Wang Z; Cao Z; Wen D; Zhang X; Wang B; Yang Y; Lu L; Dong X J Comput Assist Tomogr; 2024 May-Jun 01; 48(3):498-507. PubMed ID: 38438336 [TBL] [Abstract][Full Text] [Related]
29. Radiomics prognostication model in glioblastoma using diffusion- and perfusion-weighted MRI. Park JE; Kim HS; Jo Y; Yoo RE; Choi SH; Nam SJ; Kim JH Sci Rep; 2020 Mar; 10(1):4250. PubMed ID: 32144360 [TBL] [Abstract][Full Text] [Related]
30. An Improvement of Survival Stratification in Glioblastoma Patients via Combining Subregional Radiomics Signatures. Yang Y; Han Y; Hu X; Wang W; Cui G; Guo L; Zhang X Front Neurosci; 2021; 15():683452. PubMed ID: 34054424 [TBL] [Abstract][Full Text] [Related]
31. A Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer. Wu S; Zheng J; Li Y; Yu H; Shi S; Xie W; Liu H; Su Y; Huang J; Lin T Clin Cancer Res; 2017 Nov; 23(22):6904-6911. PubMed ID: 28874414 [No Abstract] [Full Text] [Related]
32. A deep learning radiomics model for preoperative grading in meningioma. Zhu Y; Man C; Gong L; Dong D; Yu X; Wang S; Fang M; Wang S; Fang X; Chen X; Tian J Eur J Radiol; 2019 Jul; 116():128-134. PubMed ID: 31153553 [TBL] [Abstract][Full Text] [Related]
33. Prediction early recurrence of hepatocellular carcinoma eligible for curative ablation using a Radiomics nomogram. Yuan C; Wang Z; Gu D; Tian J; Zhao P; Wei J; Yang X; Hao X; Dong D; He N; Sun Y; Gao W; Feng J Cancer Imaging; 2019 Apr; 19(1):21. PubMed ID: 31027510 [TBL] [Abstract][Full Text] [Related]
34. Deep learning and radiomics analysis for prediction of placenta invasion based on T2WI. Shao Q; Xuan R; Wang Y; Xu J; Ouyang M; Yin C; Jin W Math Biosci Eng; 2021 Jul; 18(5):6198-6215. PubMed ID: 34517530 [TBL] [Abstract][Full Text] [Related]
35. Algorithmic three-dimensional analysis of tumor shape in MRI improves prognosis of survival in glioblastoma: a multi-institutional study. Czarnek N; Clark K; Peters KB; Mazurowski MA J Neurooncol; 2017 Mar; 132(1):55-62. PubMed ID: 28074320 [TBL] [Abstract][Full Text] [Related]
36. Magnetic resonance imaging based radiomics signature for the preoperative discrimination of stage I-II and III-IV head and neck squamous cell carcinoma. Ren J; Tian J; Yuan Y; Dong D; Li X; Shi Y; Tao X Eur J Radiol; 2018 Sep; 106():1-6. PubMed ID: 30150029 [TBL] [Abstract][Full Text] [Related]
37. Radiomics Signature on Magnetic Resonance Imaging: Association with Disease-Free Survival in Patients with Invasive Breast Cancer. Park H; Lim Y; Ko ES; Cho HH; Lee JE; Han BK; Ko EY; Choi JS; Park KW Clin Cancer Res; 2018 Oct; 24(19):4705-4714. PubMed ID: 29914892 [No Abstract] [Full Text] [Related]
38. Age groups related glioblastoma study based on radiomics approach. Li Z; Wang Y; Yu J; Guo Y; Zhang Q Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):18-25. PubMed ID: 28914549 [TBL] [Abstract][Full Text] [Related]
39. Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma. Wang G; He L; Yuan C; Huang Y; Liu Z; Liang C Eur J Radiol; 2018 Jan; 98():100-106. PubMed ID: 29279146 [TBL] [Abstract][Full Text] [Related]
40. Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. Zhou M; Chaudhury B; Hall LO; Goldgof DB; Gillies RJ; Gatenby RA J Magn Reson Imaging; 2017 Jul; 46(1):115-123. PubMed ID: 27678245 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]