These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28871188)

  • 1. Himalayan glaciers experienced significant mass loss during later phases of little ice age.
    Shekhar M; Bhardwaj A; Singh S; Ranhotra PS; Bhattacharyya A; Pal AK; Roy I; Martín-Torres FJ; Zorzano MP
    Sci Rep; 2017 Sep; 7(1):10305. PubMed ID: 28871188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Little Ice Age climatic erraticism as an analogue for future enhanced hydroclimatic variability across the American Southwest.
    Loisel J; MacDonald GM; Thomson MJ
    PLoS One; 2017; 12(10):e0186282. PubMed ID: 29036207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated mass loss of Himalayan glaciers since the Little Ice Age.
    Lee E; Carrivick JL; Quincey DJ; Cook SJ; James WHM; Brown LE
    Sci Rep; 2021 Dec; 11(1):24284. PubMed ID: 34931039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glacial lakes exacerbate Himalayan glacier mass loss.
    King O; Bhattacharya A; Bhambri R; Bolch T
    Sci Rep; 2019 Dec; 9(1):18145. PubMed ID: 31792244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the strongly imbalanced state of glaciers in the Sikkim, eastern Himalaya, India.
    Garg PK; Shukla A; Jasrotia AS
    Sci Total Environ; 2019 Nov; 691():16-35. PubMed ID: 31306874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle.
    Tudhope AW; Chilcott CP; McCulloch MT; Cook ER; Chappell J; Ellam RM; Lea DW; Lough JM; Shimmield GB
    Science; 2001 Feb; 291(5508):1511-7. PubMed ID: 11222850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling.
    Rustic GT; Koutavas A; Marchitto TM; Linsley BK
    Science; 2015 Dec; 350(6267):1537-41. PubMed ID: 26634438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Split westerlies over Europe in the early Little Ice Age.
    Hu HM; Shen CC; Chiang JCH; Trouet V; Michel V; Tsai HC; Valensi P; Spötl C; Starnini E; Zunino M; Chien WY; Sung WH; Chien YT; Chang P; Korty R
    Nat Commun; 2022 Aug; 13(1):4898. PubMed ID: 35987980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Millennial and orbital variations of El Niño/Southern Oscillation and high-latitude climate in the last glacial period.
    Turney CS; Kershaw AP; Clemens SC; Branch N; Moss PT; Fifield LK
    Nature; 2004 Mar; 428(6980):306-10. PubMed ID: 15029193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-proxy approach to Late Holocene fluctuations of Tungnahryggsjökull glaciers in the Tröllaskagi peninsula (northern Iceland).
    Fernández-Fernández JM; Palacios D; Andrés N; Schimmelpfennig I; Brynjólfsson S; Sancho LG; Zamorano JJ; Heiðmarsson S; Sæmundsson Þ;
    Sci Total Environ; 2019 May; 664():499-517. PubMed ID: 30759413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of El Niño Southern Oscillation on infectious disease hospitalization risk in the United States.
    Fisman DN; Tuite AR; Brown KA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14589-14594. PubMed ID: 27791069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneity in topographic control on velocities of Western Himalayan glaciers.
    Sam L; Bhardwaj A; Kumar R; Buchroithner MF; Martín-Torres FJ
    Sci Rep; 2018 Aug; 8(1):12843. PubMed ID: 30150785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paradoxical cold conditions during the medieval climate anomaly in the Western Arctic.
    Jomelli V; Lane T; Favier V; Masson-Delmotte V; Swingedouw D; Rinterknecht V; Schimmelpfennig I; Brunstein D; Verfaillie D; Adamson K; Leanni L; Mokadem F;
    Sci Rep; 2016 Sep; 6():32984. PubMed ID: 27609585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. More frequent occurrence of westerly disturbances in Karakoram up to 2100.
    Ridley J; Wiltshire A; Mathison C
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S31-5. PubMed ID: 23582410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global warming 2007. An update to global warming: the balance of evidence and its policy implications.
    Keller CF
    ScientificWorldJournal; 2007 Mar; 7():381-99. PubMed ID: 17370024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial distribution pattern of degree-day factors of glaciers on the Qinghai-Tibetan Plateau.
    Deng C; Zhang W
    Environ Monit Assess; 2018 Jul; 190(8):475. PubMed ID: 30022373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ice thickness and volume changes across the Southern Alps, New Zealand, from the little ice age to present.
    Carrivick JL; James WHM; Grimes M; Sutherland JL; Lorrey AM
    Sci Rep; 2020 Aug; 10(1):13392. PubMed ID: 32770050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrological variation recorded in a subalpine peatland of Northeast Asia since the Little Ice Age and its possible driving mechanisms.
    Zhang M; Bu Z; Li H; Liu S; Chen J; Cui Y
    Sci Total Environ; 2021 Jun; 772():144923. PubMed ID: 33578159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution and forcing mechanisms of El Niño over the past 21,000 years.
    Liu Z; Lu Z; Wen X; Otto-Bliesner BL; Timmermann A; Cobb KM
    Nature; 2014 Nov; 515(7528):550-3. PubMed ID: 25428502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding global climate change: paleoclimate perspective from the world's highest mountains.
    Thompson LG
    Proc Am Philos Soc; 2010 Jun; 154(2):133-57. PubMed ID: 21553594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.