These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 28871194)
1. Effect of amino acid mutations on the conformational dynamics of amyloidogenic immunoglobulin light-chains: A combined NMR and in silico study. Mukherjee S; Pondaven SP; Hand K; Madine J; Jaroniec CP Sci Rep; 2017 Sep; 7(1):10339. PubMed ID: 28871194 [TBL] [Abstract][Full Text] [Related]
2. Conformational flexibility of a human immunoglobulin light chain variable domain by relaxation dispersion nuclear magnetic resonance spectroscopy: implications for protein misfolding and amyloid assembly. Mukherjee S; Pondaven SP; Jaroniec CP Biochemistry; 2011 Jul; 50(26):5845-57. PubMed ID: 21627161 [TBL] [Abstract][Full Text] [Related]
3. A model for amyloid fibril formation in immunoglobulin light chains based on comparison of amyloidogenic and benign proteins and specific antibody binding. Khurana R; Souillac PO; Coats AC; Minert L; Ionescu-Zanetti C; Carter SA; Solomon A; Fink AL Amyloid; 2003 Jun; 10(2):97-109. PubMed ID: 12964417 [TBL] [Abstract][Full Text] [Related]
4. Decreased amyloidogenicity caused by mutational modulation of surface properties of the immunoglobulin light chain BRE variable domain. Kobayashi Y; Tsutsumi H; Abe T; Ikeda K; Tashiro Y; Unzai S; Kamikubo H; Kataoka M; Hiroaki H; Hamada D Biochemistry; 2014 Aug; 53(31):5162-73. PubMed ID: 25062800 [TBL] [Abstract][Full Text] [Related]
5. A Conservative Point Mutation in a Dynamic Antigen-binding Loop of Human Immunoglobulin λ6 Light Chain Promotes Pathologic Amyloid Formation. Peterle D; Klimtchuk ES; Wales TE; Georgescauld F; Connors LH; Engen JR; Gursky O J Mol Biol; 2021 Dec; 433(24):167310. PubMed ID: 34678302 [TBL] [Abstract][Full Text] [Related]
6. Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates. Khurana R; Gillespie JR; Talapatra A; Minert LJ; Ionescu-Zanetti C; Millett I; Fink AL Biochemistry; 2001 Mar; 40(12):3525-35. PubMed ID: 11297418 [TBL] [Abstract][Full Text] [Related]
7. Physicochemical consequences of amino acid variations that contribute to fibril formation by immunoglobulin light chains. Raffen R; Dieckman LJ; Szpunar M; Wunschl C; Pokkuluri PR; Dave P; Wilkins Stevens P; Cai X; Schiffer M; Stevens FJ Protein Sci; 1999 Mar; 8(3):509-17. PubMed ID: 10091653 [TBL] [Abstract][Full Text] [Related]
8. Fatal amyloid formation in a patient's antibody light chain is caused by a single point mutation. Kazman P; Vielberg MT; Pulido Cendales MD; Hunziger L; Weber B; Hegenbart U; Zacharias M; Köhler R; Schönland S; Groll M; Buchner J Elife; 2020 Mar; 9():. PubMed ID: 32151314 [TBL] [Abstract][Full Text] [Related]
9. Mutations in specific structural regions of immunoglobulin light chains are associated with free light chain levels in patients with AL amyloidosis. Poshusta TL; Sikkink LA; Leung N; Clark RJ; Dispenzieri A; Ramirez-Alvarado M PLoS One; 2009; 4(4):e5169. PubMed ID: 19365555 [TBL] [Abstract][Full Text] [Related]
10. Effect of methionine oxidation on the structural properties, conformational stability, and aggregation of immunoglobulin light chain LEN. Hu D; Qin Z; Xue B; Fink AL; Uversky VN Biochemistry; 2008 Aug; 47(33):8665-77. PubMed ID: 18652490 [TBL] [Abstract][Full Text] [Related]
12. Mechanistic Insights into the Early Events in the Aggregation of Immunoglobulin Light Chains. Misra P; Blancas-Mejia LM; Ramirez-Alvarado M Biochemistry; 2019 Jul; 58(29):3155-3168. PubMed ID: 31287666 [TBL] [Abstract][Full Text] [Related]
13. Phage display and peptide mapping of an immunoglobulin light chain fibril-related conformational epitope. O'Nuallain B; Allen A; Ataman D; Weiss DT; Solomon A; Wall JS Biochemistry; 2007 Nov; 46(45):13049-58. PubMed ID: 17944486 [TBL] [Abstract][Full Text] [Related]
14. Exploring the sequence features determining amyloidosis in human antibody light chains. Rawat P; Prabakaran R; Kumar S; Gromiha MM Sci Rep; 2021 Jul; 11(1):13785. PubMed ID: 34215782 [TBL] [Abstract][Full Text] [Related]
15. Different Dynamics in 6aJL2 Proteins Associated with AL Amyloidosis, a Conformational Disease. Maya-Martinez R; French-Pacheco L; Valdés-García G; Pastor N; Amero C Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31438515 [TBL] [Abstract][Full Text] [Related]
16. Computational evidences of a misfolding event in an aggregation-prone light chain preceding the formation of the non-native pathogenic dimer. Desantis F; Miotto M; Milanetti E; Ruocco G; Di Rienzo L Proteins; 2024 Jul; 92(7):797-807. PubMed ID: 38314653 [TBL] [Abstract][Full Text] [Related]
17. Driving forces in amyloidosis: How does a light chain make a heavy heart? Otzen DE J Biol Chem; 2021; 296():100785. PubMed ID: 34019874 [TBL] [Abstract][Full Text] [Related]
18. The Antibody Light-Chain Linker Regulates Domain Orientation and Amyloidogenicity. Weber B; Hora M; Kazman P; Göbl C; Camilloni C; Reif B; Buchner J J Mol Biol; 2018 Dec; 430(24):4925-4940. PubMed ID: 30414962 [TBL] [Abstract][Full Text] [Related]
19. Both the environment and somatic mutations govern the aggregation pathway of pathogenic immunoglobulin light chain. Davis DP; Gallo G; Vogen SM; Dul JL; Sciarretta KL; Kumar A; Raffen R; Stevens FJ; Argon Y J Mol Biol; 2001 Nov; 313(5):1021-34. PubMed ID: 11700059 [TBL] [Abstract][Full Text] [Related]
20. Towards understanding the structure-function relationship of human amyloid disease. Dealwis C; Wall J Curr Drug Targets; 2004 Feb; 5(2):159-71. PubMed ID: 15011949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]