These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28871212)

  • 1. Evaluation of consumer monitors to measure particulate matter.
    Sousan S; Koehler K; Hallett L; Peters TM
    J Aerosol Sci; 2017 May; 107():123-133. PubMed ID: 28871212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Respirable Mass Concentrations Measured by a Personal Dust Monitor and a Personal DataRAM to Gravimetric Measurements.
    Halterman A; Sousan S; Peters TM
    Ann Work Expo Health; 2017 Dec; 62(1):62-71. PubMed ID: 29136129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of Four Consumer-grade Air Pollution Measurement Devices in Different Residences.
    Manibusan S; Mainelis G
    Aerosol Air Qual Res; 2020 Feb; 20(2):217-230. PubMed ID: 33184562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-comparison of Low-cost Sensors for Measuring the Mass Concentration of Occupational Aerosols.
    Sousan S; Koehler K; Thomas G; Park JH; Hillman M; Halterman A; Peters TM
    Aerosol Sci Technol; 2016; 50(5):462-473. PubMed ID: 28867868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laboratory Evaluation of Low-Cost Optical Particle Counters for Environmental and Occupational Exposures.
    Sousan S; Regmi S; Park YM
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34204182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of an aerosol photometer for monitoring welding fume levels in a shipyard.
    Glinsmann PW; Rosenthal FS
    Am Ind Hyg Assoc J; 1985 Jul; 46(7):391-5. PubMed ID: 3880193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of consumer and research grade indoor air quality monitors to residential sources of fine particles.
    Singer BC; Delp WW
    Indoor Air; 2018 Jul; 28(4):624-639. PubMed ID: 29683219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibration of the Welding Advanced REACH Tool (weldART).
    Sailabaht A; Wang F; Cherrie JW
    Int J Hyg Environ Health; 2020 Jun; 227():113519. PubMed ID: 32272436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the Alphasense Optical Particle Counter (OPC-N2) and the Grimm Portable Aerosol Spectrometer (PAS-1.108).
    Sousan S; Koehler K; Hallett L; Peters TM
    Aerosol Sci Technol; 2016; 50(12):1352-1365. PubMed ID: 28871213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One Year Evaluation of Three Low-Cost PM
    Zamora ML; Rice J; Koehler K
    Atmos Environ (1994); 2020 Aug; 235():. PubMed ID: 32647492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision and Accuracy of a Direct-Reading Miniaturized Monitor in PM
    Borghi F; Spinazzè A; Campagnolo D; Rovelli S; Cattaneo A; Cavallo DM
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride.
    Cho HW; Yoon CS; Lee JH; Lee SJ; Viner A; Johnson EW
    Ann Occup Hyg; 2011 Jul; 55(6):666-80. PubMed ID: 21742627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of real-time instruments and gravimetric method when measuring particulate matter in a residential building.
    Wang Z; Calderón L; Patton AP; Sorensen Allacci M; Senick J; Wener R; Andrews CJ; Mainelis G
    J Air Waste Manag Assoc; 2016 Nov; 66(11):1109-1120. PubMed ID: 27333205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory comparison of field portable X-ray fluorescence spectrometer (FP-XRF) and inductively coupled plasma mass spectrometry (ICP-MS) for determination of airborne metals in stainless steel welding fume.
    Newton A; Rule AM; Serdar B; Koehler K
    J Occup Environ Hyg; 2023 Nov; 20(11):536-544. PubMed ID: 37578775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of low-cost particle sensor types in long-term indoor air pollution health studies after repeated calibration, 2019-2021.
    Anastasiou E; Vilcassim MJR; Adragna J; Gill E; Tovar A; Thorpe LE; Gordon T
    Sci Rep; 2022 Aug; 12(1):14571. PubMed ID: 36028517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes.
    Chang C; Demokritou P; Shafer M; Christiani D
    Environ Sci Process Impacts; 2013 Jan; 15(1):214-24. PubMed ID: 24592438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photometer response determination based on aerosol physical characteristics.
    O'Shaughnessy PT; Slagley JM
    AIHA J (Fairfax, Va); 2002; 63(5):578-85. PubMed ID: 12529912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct-reading inhalable dust monitoring--an assessment of current measurement methods.
    Thorpe A; Walsh PT
    Ann Occup Hyg; 2013 Aug; 57(7):824-41. PubMed ID: 23704135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A headset-mounted mini sampler for measuring exposure to welding aerosol in the breathing zone.
    Lidén G; Surakka J
    Ann Occup Hyg; 2009 Mar; 53(2):99-116. PubMed ID: 19196747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility and acceptability of monitoring personal air pollution exposure with sensors for asthma self-management.
    Xie S; Meeker JR; Perez L; Eriksen W; Localio A; Park H; Jen A; Goldstein M; Temeng AF; Morales SM; Christie C; Greenblatt RE; Barg FK; Apter AJ; Himes BE
    Asthma Res Pract; 2021 Sep; 7(1):13. PubMed ID: 34482835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.