BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 28871245)

  • 1. Comparative Genomic Analysis of Neutrophilic Iron(II) Oxidizer Genomes for Candidate Genes in Extracellular Electron Transfer.
    He S; Barco RA; Emerson D; Roden EE
    Front Microbiol; 2017; 8():1584. PubMed ID: 28871245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron Oxidation by a Fused Cytochrome-Porin Common to Diverse Iron-Oxidizing Bacteria.
    Keffer JL; McAllister SM; Garber AI; Hallahan BJ; Sutherland MC; Rozovsky S; Chan CS
    mBio; 2021 Aug; 12(4):e0107421. PubMed ID: 34311573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA.
    Liu Y; Wang Z; Liu J; Levar C; Edwards MJ; Babauta JT; Kennedy DW; Shi Z; Beyenal H; Bond DR; Clarke TA; Butt JN; Richardson DJ; Rosso KM; Zachara JM; Fredrickson JK; Shi L
    Environ Microbiol Rep; 2014 Dec; 6(6):776-85. PubMed ID: 25139405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA.
    Liu Y; Fredrickson JK; Zachara JM; Shi L
    Front Microbiol; 2015; 6():1075. PubMed ID: 26483786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria.
    Kato S; Ohkuma M; Powell DH; Krepski ST; Oshima K; Hattori M; Shapiro N; Woyke T; Chan CS
    Front Microbiol; 2015; 6():1265. PubMed ID: 26617599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic analyses of bacterial porin-cytochrome gene clusters.
    Shi L; Fredrickson JK; Zachara JM
    Front Microbiol; 2014; 5():657. PubMed ID: 25505896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for Quinol Oxidation Activity of ImoA, a Novel NapC/NirT Family Protein from the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1.
    Jain A; Coelho A; Madjarov J; Paquete CM; Gralnick JA
    mBio; 2022 Oct; 13(5):e0215022. PubMed ID: 36106730
    [No Abstract]   [Full Text] [Related]  

  • 8. Unraveling Fe(II)-Oxidizing Mechanisms in a Facultative Fe(II) Oxidizer, Sideroxydans lithotrophicus Strain ES-1, via Culturing, Transcriptomics, and Reverse Transcription-Quantitative PCR.
    Zhou N; Keffer JL; Polson SW; Chan CS
    Appl Environ Microbiol; 2022 Jan; 88(2):e0159521. PubMed ID: 34788064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructing electron transfer components from an Fe(II) oxidizing bacterium.
    Jain A; Kalb MJ; Gralnick JA
    Microbiology (Reading); 2022 Sep; 168(9):. PubMed ID: 36111788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent Nrf Family Proteins and MtrCAB Homologs Facilitate Extracellular Electron Transfer in Aeromonas hydrophila.
    Conley BE; Intile PJ; Bond DR; Gralnick JA
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30266730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gallionellaceae pangenomic analysis reveals insight into phylogeny, metabolic flexibility, and iron oxidation mechanisms.
    Hoover RL; Keffer JL; Polson SW; Chan CS
    bioRxiv; 2023 Feb; ():. PubMed ID: 36747706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of
    Fernandes AP; Nunes TC; Paquete CM; Salgueiro CA
    Biochem J; 2017 Feb; 474(5):797-808. PubMed ID: 28093471
    [No Abstract]   [Full Text] [Related]  

  • 13. Genomic Analyses of the Quinol Oxidases and/or Quinone Reductases Involved in Bacterial Extracellular Electron Transfer.
    Zhong Y; Shi L
    Front Microbiol; 2018; 9():3029. PubMed ID: 30619124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Different Putative Outer Membrane Electron Conduits Necessary for Fe(III) Citrate, Fe(III) Oxide, Mn(IV) Oxide, or Electrode Reduction by Geobacter sulfurreducens.
    Jiménez Otero F; Chan CH; Bond DR
    J Bacteriol; 2018 Oct; 200(19):. PubMed ID: 30038047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metagenomic Analyses of the Autotrophic Fe(II)-Oxidizing, Nitrate-Reducing Enrichment Culture KS.
    He S; Tominski C; Kappler A; Behrens S; Roden EE
    Appl Environ Microbiol; 2016 May; 82(9):2656-2668. PubMed ID: 26896135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens.
    Aklujkar M; Coppi MV; Leang C; Kim BC; Chavan MA; Perpetua LA; Giloteaux L; Liu A; Holmes DE
    Microbiology (Reading); 2013 Mar; 159(Pt 3):515-535. PubMed ID: 23306674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validating the Cyc2 Neutrophilic Iron Oxidation Pathway Using Meta-omics of
    McAllister SM; Polson SW; Butterfield DA; Glazer BT; Sylvan JB; Chan CS
    mSystems; 2020 Feb; 5(1):. PubMed ID: 32071158
    [No Abstract]   [Full Text] [Related]  

  • 18. New Insight into Microbial Iron Oxidation as Revealed by the Proteomic Profile of an Obligate Iron-Oxidizing Chemolithoautotroph.
    Barco RA; Emerson D; Sylvan JB; Orcutt BN; Jacobson Meyers ME; Ramírez GA; Zhong JD; Edwards KJ
    Appl Environ Microbiol; 2015 Sep; 81(17):5927-37. PubMed ID: 26092463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoferrotrophs Produce a PioAB Electron Conduit for Extracellular Electron Uptake.
    Gupta D; Sutherland MC; Rengasamy K; Meacham JM; Kranz RG; Bose A
    mBio; 2019 Nov; 10(6):. PubMed ID: 31690680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic Insights into Two Novel Fe(II)-Oxidizing
    Blackwell N; Bryce C; Straub D; Kappler A; Kleindienst S
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32561582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.