BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28871292)

  • 1. Emerging investigator series: As(v) in magnetite: incorporation and redistribution.
    Huhmann BL; Neumann A; Boyanov MI; Kemner KM; Scherer MM
    Environ Sci Process Impacts; 2017 Oct; 19(10):1208-1219. PubMed ID: 28871292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging investigator series: interdependency of green rust transformation and the partitioning and binding mode of arsenic.
    van Genuchten CM; Behrends T; Dideriksen K
    Environ Sci Process Impacts; 2019 Sep; 21(9):1459-1476. PubMed ID: 31353376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of magnetite stoichiometry on Fe(II) uptake and nitrobenzene reduction.
    Gorski CA; Scherer MM
    Environ Sci Technol; 2009 May; 43(10):3675-80. PubMed ID: 19544872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fe atom exchange between aqueous Fe2+ and magnetite.
    Gorski CA; Handler RM; Beard BL; Pasakarnis T; Johnson CM; Scherer MM
    Environ Sci Technol; 2012 Nov; 46(22):12399-407. PubMed ID: 22577839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate.
    Sun J; Chillrud SN; Mailloux BJ; Stute M; Singh R; Dong H; Lepre CJ; Bostick BC
    Chemosphere; 2016 Feb; 144():1106-15. PubMed ID: 26454120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation and retention of 99-Tc(IV) in magnetite under high pH conditions.
    Marshall TA; Morris K; Law GT; Mosselmans JF; Bots P; Parry SA; Shaw S
    Environ Sci Technol; 2014 Oct; 48(20):11853-62. PubMed ID: 25236360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions.
    Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE
    Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Magnetite Formation and Long-Term Arsenic Immobilization under Advective Flow Conditions.
    Sun J; Chillrud SN; Mailloux BJ; Bostick BC
    Environ Sci Technol; 2016 Sep; 50(18):10162-71. PubMed ID: 27533278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of PCE and TCE by magnetite revisited.
    Culpepper JD; Scherer MM; Robinson TC; Neumann A; Cwiertny D; Latta DE
    Environ Sci Process Impacts; 2018 Oct; 20(10):1340-1349. PubMed ID: 30191930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Oxalate on Ni Fate during Fe(II)-Catalyzed Recrystallization of Hematite and Goethite.
    Flynn ED; Catalano JG
    Environ Sci Technol; 2018 Jun; 52(12):6920-6927. PubMed ID: 29806459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite.
    Coker VS; Gault AG; Pearce CI; van der Laan G; Telling ND; Charnock JM; Polya DA; Lloyd JR
    Environ Sci Technol; 2006 Dec; 40(24):7745-50. PubMed ID: 17256522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic(III) and arsenic(V) speciation during transformation of lepidocrocite to magnetite.
    Wang Y; Morin G; Ona-Nguema G; Brown GE
    Environ Sci Technol; 2014 Dec; 48(24):14282-90. PubMed ID: 25425339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous Vanadate Removal by Iron(II)-Bearing Phases under Anoxic Conditions.
    Vessey CJ; Lindsay MBJ
    Environ Sci Technol; 2020 Apr; 54(7):4006-4015. PubMed ID: 32142601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetite synthesis from ferrous iron solution at pH 6.8 in a continuous stirred tank reactor.
    Mos YM; Zorzano KB; Buisman CJN; Weijma J
    Water Sci Technol; 2018 Apr; 77(7-8):1870-1878. PubMed ID: 29676744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of chloride and Fe(II) content on the reduction of Hg(II) by magnetite.
    Pasakarnis TS; Boyanov MI; Kemner KM; Mishra B; O'Loughlin EJ; Parkin G; Scherer MM
    Environ Sci Technol; 2013 Jul; 47(13):6987-94. PubMed ID: 23621619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abiotic reduction of antimony(V) by green rust (Fe(4)(II)Fe(2)(III)(OH)(12)SO(4).3H(2)O).
    Mitsunobu S; Takahashi Y; Sakai Y
    Chemosphere; 2008 Jan; 70(5):942-7. PubMed ID: 17761212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferrous iron enhances arsenic sorption and oxidation by non-stoichiometric magnetite and maghemite.
    Gubler R; ThomasArrigo LK
    J Hazard Mater; 2021 Jan; 402():123425. PubMed ID: 32739723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selenate removal by zero-valent iron in oxic condition: the role of Fe(II) and selenate removal mechanism.
    Yoon IH; Bang S; Kim KW; Kim MG; Park SY; Choi WK
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1081-90. PubMed ID: 25943509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of magnetite stoichiometry on U(VI) reduction.
    Latta DE; Gorski CA; Boyanov MI; O'Loughlin EJ; Kemner KM; Scherer MM
    Environ Sci Technol; 2012 Jan; 46(2):778-86. PubMed ID: 22148359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineralogy and buffer identity effects on RDX kinetics and intermediates during reaction with natural and synthetic magnetite.
    Strehlau JH; Berens MJ; Arnold WA
    Chemosphere; 2018 Dec; 213():602-609. PubMed ID: 30292004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.