BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 28871340)

  • 21. Lon protease downregulates phenazine-1-carboxamide biosynthesis by degrading the quorum sensing signal synthase PhzI and exhibits negative feedback regulation of Lon itself in Pseudomonas chlororaphis HT66.
    Wang Z; Huang X; Jan M; Kong D; Wang W; Zhang X
    Mol Microbiol; 2021 Aug; 116(2):690-706. PubMed ID: 34097792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LysR-type transcriptional regulator FinR is required for phenazine and pyrrolnitrin biosynthesis in biocontrol Pseudomonas chlororaphis strain G05.
    Chen L; Wang Y; Miao J; Wang Q; Liu Z; Xie W; Liu X; Feng Z; Cheng S; Chi X; Ge Y
    Appl Microbiol Biotechnol; 2021 Oct; 105(20):7825-7839. PubMed ID: 34562115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Quorum sensing systems of regulation, synthesis of phenazine antibiotics, and antifungal (corrected) activity in rhizospheric bacterium Pseudomonas chlororaphis 449].
    Veselova Ma; Klein Sh; Bass IA; Lipasova VA; Metlitskaia AZ; Ovadis MI; Chernin LS; Khmel' IA
    Genetika; 2008 Dec; 44(12):1617-26. PubMed ID: 19178080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79.
    Mavrodi DV; Ksenzenko VN; Bonsall RF; Cook RJ; Boronin AM; Thomashow LS
    J Bacteriol; 1998 May; 180(9):2541-8. PubMed ID: 9573209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Phenazine 2-Hydroxy-Phenazine-1-Carboxylic Acid Promotes Extracellular DNA Release and Has Broad Transcriptomic Consequences in Pseudomonas chlororaphis 30-84.
    Wang D; Yu JM; Dorosky RJ; Pierson LS; Pierson EA
    PLoS One; 2016; 11(1):e0148003. PubMed ID: 26812402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites.
    Shen X; Wang Z; Huang X; Hu H; Wang W; Zhang X
    BMC Genomics; 2017 Sep; 18(1):715. PubMed ID: 28893188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PhzA/B catalyzes the formation of the tricycle in phenazine biosynthesis.
    Ahuja EG; Janning P; Mentel M; Graebsch A; Breinbauer R; Hiller W; Costisella B; Thomashow LS; Mavrodi DV; Blankenfeldt W
    J Am Chem Soc; 2008 Dec; 130(50):17053-61. PubMed ID: 19053436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Construction of Pseudomonas sp. M18 qscR- mutant and its regulation on biosynthesis of PCA and Plt].
    Wang Y; Yan A; Huang XQ; Zhang XH; Xu YQ
    Wei Sheng Wu Xue Bao; 2007 Apr; 47(2):254-9. PubMed ID: 17552230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and function of the phenazine biosynthesis protein PhzF from Pseudomonas fluorescens 2-79.
    Parsons JF; Song F; Parsons L; Calabrese K; Eisenstein E; Ladner JE
    Biochemistry; 2004 Oct; 43(39):12427-35. PubMed ID: 15449932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities.
    Jain R; Pandey A
    Microbiol Res; 2016 Sep; 190():63-71. PubMed ID: 27394000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum.
    Huang R; Feng Z; Chi X; Sun X; Lu Y; Zhang B; Lu R; Luo W; Wang Y; Miao J; Ge Y
    Microbiol Res; 2018 Oct; 215():55-64. PubMed ID: 30172309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disruption of MiaA provides insights into the regulation of phenazine biosynthesis under suboptimal growth conditions in Pseudomonas chlororaphis 30-84.
    Yu JM; Wang D; Pierson LS; Pierson EA
    Microbiology (Reading); 2017 Jan; 163(1):94-108. PubMed ID: 27926818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of phenazine-1-carboxamide production by quorum sensing in type strains of Pseudomonas chlororaphis subsp. chlororaphis and Pseudomonas chlororaphis subsp. piscium.
    Morohoshi T; Yabe N; Yaguchi N; Xie X; Someya N
    J Biosci Bioeng; 2022 Jun; 133(6):541-546. PubMed ID: 35365429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84.
    Pierson LS; Gaffney T; Lam S; Gong F
    FEMS Microbiol Lett; 1995 Dec; 134(2-3):299-307. PubMed ID: 8586283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of trans-2,3-dihydro-3-hydroxyanthranilic acid by engineered Pseudomonas chlororaphis GP72.
    Hu H; Li Y; Liu K; Zhao J; Wang W; Zhang X
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6607-6613. PubMed ID: 28702795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complete Genome Sequence of Pseudomonas chlororaphis subsp. aurantiaca Reveals a Triplicate Quorum-Sensing Mechanism for Regulation of Phenazine Production.
    Morohoshi T; Yamaguchi T; Xie X; Wang WZ; Takeuchi K; Someya N
    Microbes Environ; 2017 Mar; 32(1):47-53. PubMed ID: 28239068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An upstream sequence modulates phenazine production at the level of transcription and translation in the biological control strain Pseudomonas chlororaphis 30-84.
    Yu JM; Wang D; Ries TR; Pierson LS; Pierson EA
    PLoS One; 2018; 13(2):e0193063. PubMed ID: 29451920
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Population genomics-guided engineering of phenazine biosynthesis in Pseudomonas chlororaphis.
    Thorwall S; Trivedi V; Ottum E; Wheeldon I
    Metab Eng; 2023 Jul; 78():223-234. PubMed ID: 37369325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential regulation of phenazine biosynthesis by RpeA and RpeB in Pseudomonas chlororaphis 30-84.
    Wang D; Yu JM; Pierson LS; Pierson EA
    Microbiology (Reading); 2012 Jul; 158(Pt 7):1745-1757. PubMed ID: 22539162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, gacS.
    Kang BR; Han SH; Zdor RE; Anderson AJ; Spencer M; Yang KY; Kim YH; Lee MC; Cho BH; Kim YC
    J Microbiol Biotechnol; 2007 Apr; 17(4):586-93. PubMed ID: 18051268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.