These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 28871390)

  • 1. Exploring sets of molecules from patents and relationships to other active compounds in chemical space networks.
    Kunimoto R; Bajorath J
    J Comput Aided Mol Des; 2017 Sep; 31(9):779-788. PubMed ID: 28871390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinase patent space visualization using chemical replacements.
    Southall NT; Ajay
    J Med Chem; 2006 Mar; 49(6):2103-9. PubMed ID: 16539399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the medicinally relevant chemical space with compound libraries.
    López-Vallejo F; Giulianotti MA; Houghten RA; Medina-Franco JL
    Drug Discov Today; 2012 Jul; 17(13-14):718-26. PubMed ID: 22515962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building structure-activity insights through patent mining.
    Tu M; Pfefferkorn JA; Guzman-Perez A; Filipski KJ
    Pharm Pat Anal; 2012 Nov; 1(5):545-54. PubMed ID: 24236924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SureChEMBL: a large-scale, chemically annotated patent document database.
    Papadatos G; Davies M; Dedman N; Chambers J; Gaulton A; Siddle J; Koks R; Irvine SA; Pettersson J; Goncharoff N; Hersey A; Overington JP
    Nucleic Acids Res; 2016 Jan; 44(D1):D1220-8. PubMed ID: 26582922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel worlds of public and commercial bioactive chemistry data.
    Lipinski CA; Litterman NK; Southan C; Williams AJ; Clark AM; Ekins S
    J Med Chem; 2015 Mar; 58(5):2068-76. PubMed ID: 25415348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning.
    Zhang Y; Xu J; Chen H; Wang J; Wu Y; Prakasam M; Xu H
    Database (Oxford); 2016; 2016():. PubMed ID: 27087307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PubChem 2019 update: improved access to chemical data.
    Kim S; Chen J; Cheng T; Gindulyte A; He J; He S; Li Q; Shoemaker BA; Thiessen PA; Yu B; Zaslavsky L; Zhang J; Bolton EE
    Nucleic Acids Res; 2019 Jan; 47(D1):D1102-D1109. PubMed ID: 30371825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodiversity of small molecules--a new perspective in screening set selection.
    Petrone PM; Wassermann AM; Lounkine E; Kutchukian P; Simms B; Jenkins J; Selzer P; Glick M
    Drug Discov Today; 2013 Jul; 18(13-14):674-80. PubMed ID: 23454345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity profile relationships between structurally similar promiscuous compounds.
    Hu Y; Bajorath J
    Eur J Med Chem; 2013 Nov; 69():393-8. PubMed ID: 24077530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SCRIPDB: a portal for easy access to syntheses, chemicals and reactions in patents.
    Heifets A; Jurisica I
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D428-33. PubMed ID: 22067445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding opportunities for mining bioactive chemistry from patents.
    Southan C
    Drug Discov Today Technol; 2015 Jul; 14():3-9. PubMed ID: 26194581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of chemical space networks on the basis of Tversky similarity.
    Wu M; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2016 Jan; 30(1):1-12. PubMed ID: 26695392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charting, navigating, and populating natural product chemical space for drug discovery.
    Lachance H; Wetzel S; Kumar K; Waldmann H
    J Med Chem; 2012 Jul; 55(13):5989-6001. PubMed ID: 22537178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity cliff networks for medicinal chemistry.
    Stumpfe D; Bajorath J
    Drug Dev Res; 2014 Aug; 75(5):291-8. PubMed ID: 25160069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patents of bio-active compounds based on computer-aided drug discovery techniques.
    Prado-Prado F; Garcia-Mera X; Rodriguez-Borges JE; Concu R; Perez-Montoto LG; Gonzalez-Diaz H; Duardo-Sanchez A
    Front Biosci (Elite Ed); 2013 Jan; 5(2):399-407. PubMed ID: 23276997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SAR Matrix Method for Large-Scale Analysis of Compound Structure-Activity Relationships and Exploration of Multitarget Activity Spaces.
    Hu Y; Bajorath J
    Methods Mol Biol; 2018; 1825():339-352. PubMed ID: 30334212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting key example compounds in competitors' patent applications using structural information alone.
    Hattori K; Wakabayashi H; Tamaki K
    J Chem Inf Model; 2008 Jan; 48(1):135-42. PubMed ID: 18177028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovation in Small-Molecule-Druggable Chemical Space: Where are the Initial Modulators of New Targets Published?
    Ashenden SK; Kogej T; Engkvist O; Bender A
    J Chem Inf Model; 2017 Nov; 57(11):2741-2753. PubMed ID: 29068231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matched molecular pair analysis of small molecule microarray data identifies promiscuity cliffs and reveals molecular origins of extreme compound promiscuity.
    Dimova D; Hu Y; Bajorath J
    J Med Chem; 2012 Nov; 55(22):10220-8. PubMed ID: 23050678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.