These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28871410)

  • 21. One-year outcomes for da Vinci single port robot for transoral robotic surgery.
    Van Abel KM; Yin LX; Price DL; Janus JR; Kasperbauer JL; Moore EJ
    Head Neck; 2020 Aug; 42(8):2077-2087. PubMed ID: 32190942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel robotic system for single-port urologic surgery: first clinical investigation.
    Kaouk JH; Haber GP; Autorino R; Crouzet S; Ouzzane A; Flamand V; Villers A
    Eur Urol; 2014 Dec; 66(6):1033-43. PubMed ID: 25041850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preliminary study of transoral robotic surgery for pharyngeal cancer in Japan.
    Fujiwara K; Fukuhara T; Kitano H; Fujii T; Koyama S; Yamasaki A; Kataoka H; Takeuchi H
    J Robot Surg; 2016 Mar; 10(1):11-7. PubMed ID: 26645072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Compliant Transoral Surgical Robotic System Based on a Parallel Flexible Mechanism.
    Gu X; Li C; Xiao X; Lim CM; Ren H
    Ann Biomed Eng; 2019 Jun; 47(6):1329-1344. PubMed ID: 30863909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved Glottic Exposure for Robotic Microlaryngeal Surgery: A Case Series.
    McGuire DA; Rodney JP; Vasan NR
    J Voice; 2017 Sep; 31(5):628-633. PubMed ID: 28318968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid procedure for total laryngectomy with a flexible robot-assisted surgical system.
    Schuler PJ; Hoffmann TK; Veit JA; Rotter N; Friedrich DT; Greve J; Scheithauer MO
    Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 27196407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transoral robotic surgery for upper airway pathology in the pediatric population.
    Zdanski CJ; Austin GK; Walsh JM; Drake AF; Rose AS; Hackman TG; Zanation AM
    Laryngoscope; 2017 Jan; 127(1):247-251. PubMed ID: 27320495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maintenance of hemostasis in transoral robotic surgery.
    Hockstein NG; Weinstein GS; O'malley BW
    ORL J Otorhinolaryngol Relat Spec; 2005; 67(4):220-4. PubMed ID: 16145284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Teleoperated tubular continuum robots for transoral surgery - feasibility in a porcine larynx model.
    Friedrich DT; Modes V; Hoffmann TK; Greve J; Schuler PJ; Burgner-Kahrs J
    Int J Med Robot; 2018 Oct; 14(5):e1928. PubMed ID: 29923349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robotic surgery in the pediatric airway: application and safety.
    Rahbar R; Ferrari LR; Borer JG; Peters CA
    Arch Otolaryngol Head Neck Surg; 2007 Jan; 133(1):46-50; discussion 50. PubMed ID: 17224522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A transoral highly flexible robot: Novel technology and application.
    Rivera-Serrano CM; Johnson P; Zubiate B; Kuenzler R; Choset H; Zenati M; Tully S; Duvvuri U
    Laryngoscope; 2012 May; 122(5):1067-71. PubMed ID: 22447466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transoral surgery using the Flex Robotic System: Initial experience in the United States.
    Persky MJ; Issa M; Bonfili JR; Goyal N; Goldenberg D; Duvvuri U
    Head Neck; 2018 Nov; 40(11):2482-2486. PubMed ID: 30303588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transoral robotic surgery for the base of tongue squamous cell carcinoma: a preliminary comparison between da Vinci Xi and Si.
    Alessandrini M; Pavone I; Micarelli A; Caporale C
    J Robot Surg; 2018 Sep; 12(3):417-423. PubMed ID: 28905287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-Port Versus Multiport da Vinci System for Transoral Robotic Surgery of Hypopharyngeal and Laryngeal Carcinoma.
    Sampieri C; Pirola F; Costantino A; Kim D; Ho JJ; Lee K; De Virgilio A; Park YM; Kim SH
    Otolaryngol Head Neck Surg; 2023 Sep; 169(3):548-555. PubMed ID: 36939577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feasibility of robot-assisted neck dissection followed by transoral robotic surgery.
    Byeon HK; Holsinger FC; Kim DH; Kim JW; Park JH; Koh YW; Choi EC
    Br J Oral Maxillofac Surg; 2015 Jan; 53(1):68-73. PubMed ID: 25453254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transoral robotic surgery (TORS) for base of tongue neoplasms.
    O'Malley BW; Weinstein GS; Snyder W; Hockstein NG
    Laryngoscope; 2006 Aug; 116(8):1465-72. PubMed ID: 16885755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transoral robotic surgery for larynx cancer.
    Smith RV
    Otolaryngol Clin North Am; 2014 Jun; 47(3):379-95. PubMed ID: 24882796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transoral robotic surgery for the treatment of laryngeal chondrosarcoma: A case report.
    Guthrie AJ; Chai RL
    Am J Otolaryngol; 2018; 39(3):352-354. PubMed ID: 29519647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of robotic systems for transoral head and neck surgery.
    Poon H; Li C; Gao W; Ren H; Lim CM
    Oral Oncol; 2018 Dec; 87():82-88. PubMed ID: 30527249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transoral robotic thyroidectomy: a preclinical feasibility study using the da Vinci Xi platform.
    Russell JO; Noureldine SI; Al Khadem MG; Chaudhary HA; Day AT; Kim HY; Tufano RP; Richmon JD
    J Robot Surg; 2017 Sep; 11(3):341-346. PubMed ID: 28155047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.