These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 28871440)

  • 1. Triheptanoin versus trioctanoin for long-chain fatty acid oxidation disorders: a double blinded, randomized controlled trial.
    Gillingham MB; Heitner SB; Martin J; Rose S; Goldstein A; El-Gharbawy AH; Deward S; Lasarev MR; Pollaro J; DeLany JP; Burchill LJ; Goodpaster B; Shoemaker J; Matern D; Harding CO; Vockley J
    J Inherit Metab Dis; 2017 Nov; 40(6):831-843. PubMed ID: 28871440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term major clinical outcomes in patients with long chain fatty acid oxidation disorders before and after transition to triheptanoin treatment--A retrospective chart review.
    Vockley J; Marsden D; McCracken E; DeWard S; Barone A; Hsu K; Kakkis E
    Mol Genet Metab; 2015; 116(1-2):53-60. PubMed ID: 26116311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Management and diagnosis of mitochondrial fatty acid oxidation disorders: focus on very-long-chain acyl-CoA dehydrogenase deficiency.
    Yamada K; Taketani T
    J Hum Genet; 2019 Feb; 64(2):73-85. PubMed ID: 30401918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of fasting, feeding and exercise on plasma acylcarnitines among subjects with CPT2D, VLCADD and LCHADD/TFPD.
    Elizondo G; Matern D; Vockley J; Harding CO; Gillingham MB
    Mol Genet Metab; 2020; 131(1-2):90-97. PubMed ID: 32928639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological inhibition of carnitine palmitoyltransferase 1 restores mitochondrial oxidative phosphorylation in human trifunctional protein deficient fibroblasts.
    Lefort B; Gouache E; Acquaviva C; Tardieu M; Benoist JF; Dumas JF; Servais S; Chevalier S; Vianey-Saban C; Labarthe F
    Biochim Biophys Acta Mol Basis Dis; 2017 Jun; 1863(6):1292-1299. PubMed ID: 28392417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac tissue citric acid cycle intermediates in exercised very long-chain acyl-CoA dehydrogenase-deficient mice fed triheptanoin or medium-chain triglyceride.
    Gaston G; Gangoiti JA; Winn S; Chan B; Barshop BA; Harding CO; Gillingham MB
    J Inherit Metab Dis; 2020 Nov; 43(6):1232-1242. PubMed ID: 33448436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of triheptanoin (UX007) in patients with long-chain fatty acid oxidation disorders: Results from an open-label, long-term extension study.
    Vockley J; Burton B; Berry G; Longo N; Phillips J; Sanchez-Valle A; Chapman K; Tanpaiboon P; Grunewald S; Murphy E; Lu X; Cataldo J
    J Inherit Metab Dis; 2021 Jan; 44(1):253-263. PubMed ID: 32885845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle MRI in patients with long-chain fatty acid oxidation disorders.
    Diekman EF; van der Pol WL; Nievelstein RA; Houten SM; Wijburg FA; Visser G
    J Inherit Metab Dis; 2014 May; 37(3):405-13. PubMed ID: 24305961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Metabolic Defects in Fatty Acid Oxidation Using Peripheral Blood Mononuclear Cells Loaded with Deuterium-Labeled Fatty Acids.
    Yuasa M; Hata I; Sugihara K; Isozaki Y; Ohshima Y; Hara K; Tajima G; Shigematsu Y
    Dis Markers; 2019; 2019():2984747. PubMed ID: 30881520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride.
    Roe CR; Sweetman L; Roe DS; David F; Brunengraber H
    J Clin Invest; 2002 Jul; 110(2):259-69. PubMed ID: 12122118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial bioenergetics deregulation caused by long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies in rat brain: a possible role of mPTP opening as a pathomechanism in these disorders?
    Tonin AM; Amaral AU; Busanello EN; Gasparotto J; Gelain DP; Gregersen N; Wajner M
    Biochim Biophys Acta; 2014 Sep; 1842(9):1658-67. PubMed ID: 24946182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate oxidation and cardiac performance during exercise in disorders of long chain fatty acid oxidation.
    Behrend AM; Harding CO; Shoemaker JD; Matern D; Sahn DJ; Elliot DL; Gillingham MB
    Mol Genet Metab; 2012 Jan; 105(1):110-5. PubMed ID: 22030098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatal pitfalls in newborn screening for mitochondrial trifunctional protein (MTP)/long-chain 3-Hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency.
    Lotz-Havla AS; Röschinger W; Schiergens K; Singer K; Karall D; Konstantopoulou V; Wortmann SB; Maier EM
    Orphanet J Rare Dis; 2018 Jul; 13(1):122. PubMed ID: 30029694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders.
    Cecatto C; Hickmann FH; Rodrigues MD; Amaral AU; Wajner M
    FEBS J; 2015 Dec; 282(24):4714-26. PubMed ID: 26408230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triheptanoin: long-term effects in the very long-chain acyl-CoA dehydrogenase-deficient mouse.
    Tucci S; Floegel U; Beermann F; Behringer S; Spiekerkoetter U
    J Lipid Res; 2017 Jan; 58(1):196-207. PubMed ID: 27884962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medium branched chain fatty acids improve the profile of tricarboxylic acid cycle intermediates in mitochondrial fatty acid β-oxidation deficient cells: A comparative study.
    Karunanidhi A; Van't Land C; Rajasundaram D; Grings M; Vockley J; Mohsen AW
    J Inherit Metab Dis; 2022 May; 45(3):541-556. PubMed ID: 35076099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of newborn screening for fatty acid oxidation disorders on neurological outcome: A Belgian retrospective and multicentric study.
    Everard E; Laeremans H; Boemer F; Marie S; Vincent MF; Dewulf JP; Debray FG; De Laet C; Nassogne MC
    Eur J Paediatr Neurol; 2024 Mar; 49():60-65. PubMed ID: 38377647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tutorial: Triheptanoin and Nutrition Management for Treatment of Long-Chain Fatty Acid Oxidation Disorders.
    Norris MK; Scott AI; Sullivan S; Chang IJ; Lam C; Sun A; Hahn S; Thies JM; Gunnarson M; McKean KN; Merritt JL
    JPEN J Parenter Enteral Nutr; 2021 Feb; 45(2):230-238. PubMed ID: 33085788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Major clinical events and healthcare resource use among patients with long-chain fatty acid oxidation disorders in the United States: Results from LC-FAOD Odyssey program.
    Yang E; Kruger E; Yin D; Mace K; Tierney M; Liao N; Cibelli E; Drozd D; Ross N; Deering KL; Herout P; Harshaw Q; Shillington A; Thomas N; Marsden D; Kritzer A; Vockley J
    Mol Genet Metab; 2024 May; 142(1):108350. PubMed ID: 38458123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disturbance of mitochondrial functions provoked by the major long-chain 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies in skeletal muscle.
    Cecatto C; Godoy KDS; da Silva JC; Amaral AU; Wajner M
    Toxicol In Vitro; 2016 Oct; 36():1-9. PubMed ID: 27371118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.