BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28871605)

  • 1. Detection of climate change-driven trends in phytoplankton phenology.
    Henson SA; Cole HS; Hopkins J; Martin AP; Yool A
    Glob Chang Biol; 2018 Jan; 24(1):e101-e111. PubMed ID: 28871605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonality of North Atlantic phytoplankton from space: impact of environmental forcing on a changing phenology (1998-2012).
    González Taboada F; Anadón R
    Glob Chang Biol; 2014 Mar; 20(3):698-712. PubMed ID: 23943398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basin-scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean.
    Koeller P; Fuentes-Yaco C; Platt T; Sathyendranath S; Richards A; Ouellet P; Orr D; Skúladóttir U; Wieland K; Savard L; Aschan M
    Science; 2009 May; 324(5928):791-3. PubMed ID: 19423827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology.
    Asch RG; Stock CA; Sarmiento JL
    Glob Chang Biol; 2019 Aug; 25(8):2544-2559. PubMed ID: 31152499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centennial decline in North Sea water clarity causes strong delay in phytoplankton bloom timing.
    Opdal AF; Lindemann C; Aksnes DL
    Glob Chang Biol; 2019 Nov; 25(11):3946-3953. PubMed ID: 31442348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites.
    Frenken T; Velthuis M; de Senerpont Domis LN; Stephan S; Aben R; Kosten S; van Donk E; Van de Waal DB
    Glob Chang Biol; 2016 Jan; 22(1):299-309. PubMed ID: 26488235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Land use change and coastal water darkening drive synchronous dynamics in phytoplankton and fish phenology on centennial timescales.
    Opdal AF; Lindemann C; Andersen T; Hessen DO; Fiksen Ø; Aksnes DL
    Glob Chang Biol; 2024 May; 30(5):e17308. PubMed ID: 38721885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.
    Liu L; Zhang X; Donnelly A; Liu X
    Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Century-scale changes in phytoplankton phenology in the Gulf of Maine.
    Record NR; Balch WM; Stamieszkin K
    PeerJ; 2019; 7():e6735. PubMed ID: 31106049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoplankton spring bloom in the NW Mediterranean Sea under climate change.
    Grossi F; Lagasio M; Napoli A; Provenzale A; Tepsich P
    Sci Total Environ; 2024 Mar; 914():169884. PubMed ID: 38190897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton.
    Berger SA; Diehl S; Stibor H; Trommer G; Ruhenstroth M; Wild A; Weigert A; Jäger CG; Striebel M
    Oecologia; 2007 Jan; 150(4):643-54. PubMed ID: 17024384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species-specific phenological trends in shallow Pampean lakes' (Argentina) zooplankton driven by contemporary climate change in the Southern Hemisphere.
    Diovisalvi N; Odriozola M; Garcia de Souza J; Rojas Molina F; Fontanarrosa MS; Escaray R; Bustingorry J; Sanzano P; Grosman F; Zagarese H
    Glob Chang Biol; 2018 Nov; 24(11):5137-5148. PubMed ID: 30112780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter.
    Hunter-Cevera KR; Neubert MG; Olson RJ; Solow AR; Shalapyonok A; Sosik HM
    Science; 2016 Oct; 354(6310):326-329. PubMed ID: 27846565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of climate change on bioaccumulation and biomagnification of polycyclic aromatic hydrocarbons in the planktonic food web of a subtropical shallow eutrophic lake in China.
    Tao Y; Xue B; Lei G; Liu F; Wang Z
    Environ Pollut; 2017 Apr; 223():624-634. PubMed ID: 28173953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphibian breeding phenology trends under climate change: predicting the past to forecast the future.
    Green DM
    Glob Chang Biol; 2017 Feb; 23(2):646-656. PubMed ID: 27273300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation by Time During an Arctic Phytoplankton Spring Bloom.
    Tammilehto A; Watts PC; Lundholm N
    J Eukaryot Microbiol; 2017 Mar; 64(2):248-256. PubMed ID: 27543207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities.
    Barton AD; Irwin AJ; Finkel ZV; Stock CA
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2964-9. PubMed ID: 26903635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observing climate change trends in ocean biogeochemistry: when and where.
    Henson SA; Beaulieu C; Lampitt R
    Glob Chang Biol; 2016 Apr; 22(4):1561-71. PubMed ID: 26742651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sea ice and wind speed on phytoplankton spring bloom in central and southern Baltic Sea.
    Pärn O; Lessin G; Stips A
    PLoS One; 2021; 16(3):e0242637. PubMed ID: 33657117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic.
    Neukermans G; Oziel L; Babin M
    Glob Chang Biol; 2018 Jun; 24(6):2545-2553. PubMed ID: 29394007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.