BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28871605)

  • 61. Towards an Understanding of the Interactions between Freshwater Inflows and Phytoplankton Communities in a Subtropical Estuary in the Gulf of Mexico.
    Dorado S; Booe T; Steichen J; McInnes AS; Windham R; Shepard A; Lucchese AE; Preischel H; Pinckney JL; Davis SE; Roelke DL; Quigg A
    PLoS One; 2015; 10(7):e0130931. PubMed ID: 26133991
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Coarse climate change projections for species living in a fine-scaled world.
    Nadeau CP; Urban MC; Bridle JR
    Glob Chang Biol; 2017 Jan; 23(1):12-24. PubMed ID: 27550861
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe.
    Emberlin J; Detandt M; Gehrig R; Jaeger S; Nolard N; Rantio-Lehtimäki A
    Int J Biometeorol; 2002 Sep; 46(4):159-70. PubMed ID: 12242471
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A reversal of the shift towards earlier spring phenology in several Mediterranean reptiles and amphibians during the 1998-2013 warming slowdown.
    Prodon R; Geniez P; Cheylan M; Devers F; Chuine I; Besnard A
    Glob Chang Biol; 2017 Dec; 23(12):5481-5491. PubMed ID: 28712146
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Is the future blue-green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria.
    Elliott JA
    Water Res; 2012 Apr; 46(5):1364-71. PubMed ID: 22244968
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming.
    Aberle N; Lengfellner K; Sommer U
    Oecologia; 2007 Jan; 150(4):668-81. PubMed ID: 16964503
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Temporal patterns in adult salmon migration timing across southeast Alaska.
    Kovach RP; Ellison SC; Pyare S; Tallmon DA
    Glob Chang Biol; 2015 May; 21(5):1821-33. PubMed ID: 25482609
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Exploring differences in spatial patterns and temporal trends of phenological models at continental scale using gridded temperature time-series.
    Mehdipoor H; Zurita-Milla R; Augustijn EW; Izquierdo-Verdiguier E
    Int J Biometeorol; 2020 Mar; 64(3):409-421. PubMed ID: 31720857
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Abandoning Sverdrup's Critical Depth Hypothesis on phytoplankton blooms.
    Behrenfeld MJ
    Ecology; 2010 Apr; 91(4):977-89. PubMed ID: 20462113
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Species- and community-level responses combine to drive phenology of lake phytoplankton.
    Walters AW; González Sagrario Mde L; Schindler DE
    Ecology; 2013 Oct; 94(10):2188-94. PubMed ID: 24358705
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Phenological response to climate change in China: a meta-analysis.
    Ge Q; Wang H; Rutishauser T; Dai J
    Glob Chang Biol; 2015 Jan; 21(1):265-74. PubMed ID: 24895088
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Land surface phenology of Northeast China during 2000-2015: temporal changes and relationships with climate changes.
    Zhang Y; Li L; Wang H; Zhang Y; Wang N; Chen J
    Environ Monit Assess; 2017 Oct; 189(11):531. PubMed ID: 28965264
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Why decadal to century timescale palaeoclimate data are needed to explain present-day patterns of biological diversity and change.
    Fordham DA; Saltré F; Brown SC; Mellin C; Wigley TML
    Glob Chang Biol; 2018 Mar; 24(3):1371-1381. PubMed ID: 28994170
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Losing ground: projections of climate-driven bloom shifts and their implications for the future of California's almond orchards.
    Orozco J; Lauterman O; Sperling O; Paz-Kagan T; Zwieniecki MA
    Sci Rep; 2024 Jan; 14(1):636. PubMed ID: 38182702
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Climate warming: a loss of variation in populations can accompany reproductive shifts.
    Massot M; Legendre S; Fédérici P; Clobert J
    Ecol Lett; 2017 Sep; 20(9):1140-1147. PubMed ID: 28712117
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A high resolution temporal study of phytoplankton bloom dynamics in the eutrophic Taw Estuary (SW England).
    Maier G; Glegg GA; Tappin AD; Worsfold PJ
    Sci Total Environ; 2012 Sep; 434():228-39. PubMed ID: 21943722
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Exploring the universal ecological responses to climate change in a univoltine butterfly.
    Fenberg PB; Self A; Stewart JR; Wilson RJ; Brooks SJ
    J Anim Ecol; 2016 May; 85(3):739-48. PubMed ID: 26876243
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identifying multiple stressor controls on phytoplankton dynamics in the River Thames (UK) using high-frequency water quality data.
    Bowes MJ; Loewenthal M; Read DS; Hutchins MG; Prudhomme C; Armstrong LK; Harman SA; Wickham HD; Gozzard E; Carvalho L
    Sci Total Environ; 2016 Nov; 569-570():1489-1499. PubMed ID: 27422725
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Seasonality in ocean microbial communities.
    Giovannoni SJ; Vergin KL
    Science; 2012 Feb; 335(6069):671-6. PubMed ID: 22323811
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The effect of irradiance, vertical mixing and temperature on spring phytoplankton dynamics under climate change: long-term observations and model analysis.
    Tirok K; Gaedke U
    Oecologia; 2007 Jan; 150(4):625-42. PubMed ID: 16977461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.