These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 28872172)
1. A luminescent and colorimetric probe based on the functionalization of gold nanoparticles by ruthenium(ii) complexes for heparin detection. Li J; Cheng M; Li MJ Analyst; 2017 Oct; 142(19):3733-3739. PubMed ID: 28872172 [TBL] [Abstract][Full Text] [Related]
2. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide. Fu X; Chen L; Li J Analyst; 2012 Aug; 137(16):3653-8. PubMed ID: 22741162 [TBL] [Abstract][Full Text] [Related]
3. A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes. Cao R; Li B Chem Commun (Camb); 2011 Mar; 47(10):2865-7. PubMed ID: 21246153 [TBL] [Abstract][Full Text] [Related]
4. Sensitive determination of lysozyme by using a luminescent and colorimetric probe based on the aggregation of gold nanoparticles induced by an anionic ruthenate(II) complex. Li J; Mu X; Chan KC; Ko CC; Li MJ Mikrochim Acta; 2018 Aug; 185(9):428. PubMed ID: 30135991 [TBL] [Abstract][Full Text] [Related]
5. Colorimetric and luminescent bifunctional Ru(II) complex-modified gold nano probe for sensing of DNA. Li MJ; Nie MJ; Wu ZZ; Liu X; Chen GN Biosens Bioelectron; 2011 Nov; 29(1):109-14. PubMed ID: 21872463 [TBL] [Abstract][Full Text] [Related]
6. A new fluorescence "switch on" assay for heparin detection by using a functional ruthenium polypyridyl complex. Cheng TT; Yao JL; Gao X; Sun W; Shi S; Yao TM Analyst; 2013 Jun; 138(12):3483-9. PubMed ID: 23662301 [TBL] [Abstract][Full Text] [Related]
7. Visual detection of arginine based on the unique guanidino group-induced aggregation of gold nanoparticles. Pu W; Zhao H; Huang C; Wu L; Xu D Anal Chim Acta; 2013 Feb; 764():78-83. PubMed ID: 23374218 [TBL] [Abstract][Full Text] [Related]
8. A facile chemiluminescence sensing for ultrasensitive detection of heparin using charge effect of positively-charged AuNPs. Qi Y; He J; Xiu FR; Yu X; Li Y; Lu Y; Gao X; Song Z; Li B Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():310-318. PubMed ID: 30909087 [TBL] [Abstract][Full Text] [Related]
9. [Colorimetric assay of perfluorooctanesulfonate based on gold nanoparticles]. Cong YB; Zheng YH; Zheng L; Wu F; Tan KJ Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):189-92. PubMed ID: 25993846 [TBL] [Abstract][Full Text] [Related]
10. Colorimetric and fluorometric aggregation-based heparin assay by using gold nanoclusters and gold nanoparticles. Zhang Z; Li S; Huang P; Feng J; Wu FY Mikrochim Acta; 2019 Nov; 186(12):790. PubMed ID: 31734744 [TBL] [Abstract][Full Text] [Related]
11. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Kumar N; Seth R; Kumar H Anal Biochem; 2014 Jul; 456():43-9. PubMed ID: 24727351 [TBL] [Abstract][Full Text] [Related]
12. Colorimetric detection for uranyl ions in water using vinylphosphonic acid functionalized gold nanoparticles based on smartphone. Zhang L; Huang D; Zhao P; Yue G; Yang L; Dan W Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 269():120748. PubMed ID: 34952439 [TBL] [Abstract][Full Text] [Related]
13. The mechanism of the adsorption of dsDNA on citrate-stabilized gold nanoparticles and a colorimetric and visual method for detecting the V600E point mutation of the BRAF gene. Liu Z; Hettihewa M; Shu Y; Zhou C; Wan Q; Liu L Mikrochim Acta; 2018 Mar; 185(4):240. PubMed ID: 29594675 [TBL] [Abstract][Full Text] [Related]
14. pH-independent optical sensing of heparin based on ionic liquid-capped gold nanoparticles. Hemmateenejad B; Dorostkar S; Shakerizadeh-Shirazi F; Shamsipur M Analyst; 2013 Sep; 138(17):4830-7. PubMed ID: 23826612 [TBL] [Abstract][Full Text] [Related]
15. Colorimetric sensing of selenocystine using gold nanoparticles. Liu L; Wang X; Yang J; Bai Y Anal Biochem; 2017 Oct; 535():19-24. PubMed ID: 28739132 [TBL] [Abstract][Full Text] [Related]
16. Gold Nanoparticle-Based Colorimetric Assay for Selenium Detection via Hydride Generation. Cao G; Xu F; Wang S; Xu K; Hou X; Wu P Anal Chem; 2017 Apr; 89(8):4695-4700. PubMed ID: 28326763 [TBL] [Abstract][Full Text] [Related]
17. Colorimetric detection of melamine in milk based on Triton X-100 modified gold nanoparticles and its paper-based application. Gao N; Huang P; Wu F Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():174-180. PubMed ID: 29136582 [TBL] [Abstract][Full Text] [Related]
18. Colorimetric detection of potassium ions using aptamer-functionalized gold nanoparticles. Chen Z; Huang Y; Li X; Zhou T; Ma H; Qiang H; Liu Y Anal Chim Acta; 2013 Jul; 787():189-92. PubMed ID: 23830438 [TBL] [Abstract][Full Text] [Related]
19. Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes. Zhang L; Xu C; Liu C; Li B Anal Chim Acta; 2014 Jan; 809():123-7. PubMed ID: 24418142 [TBL] [Abstract][Full Text] [Related]
20. Direct colorimetric biosensing of mercury(II) ion based on aggregation of poly-(γ-glutamic acid)-functionalized gold nanoparticles. Guan H; Liu X; Wang W; Liang J Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():527-32. PubMed ID: 24291429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]