These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 28872304)
1. Development of an Azo-Based Photosensitizer Activated under Mild Hypoxia for Photodynamic Therapy. Piao W; Hanaoka K; Fujisawa T; Takeuchi S; Komatsu T; Ueno T; Terai T; Tahara T; Nagano T; Urano Y J Am Chem Soc; 2017 Oct; 139(39):13713-13719. PubMed ID: 28872304 [TBL] [Abstract][Full Text] [Related]
2. A GSH-activatable ruthenium(ii)-azo photosensitizer for two-photon photodynamic therapy. Zeng L; Kuang S; Li G; Jin C; Ji L; Chao H Chem Commun (Camb); 2017 Feb; 53(12):1977-1980. PubMed ID: 28119967 [TBL] [Abstract][Full Text] [Related]
3. Microenvironment-triggered dual-activation of a photosensitizer- fluorophore conjugate for tumor specific imaging and photodynamic therapy. Wang C; Wang S; Wang Y; Wu H; Bao K; Sheng R; Li X Sci Rep; 2020 Jul; 10(1):12127. PubMed ID: 32699340 [TBL] [Abstract][Full Text] [Related]
4. Photothermal Responsive Singlet Oxygen Nanocarriers for Hypoxic Cancer Cell Ablation. Zhu T; Yu Q; Feng Z; Zhao W; Liu S; Huang W; Zhao Q Chembiochem; 2021 Aug; 22(15):2546-2552. PubMed ID: 34101959 [TBL] [Abstract][Full Text] [Related]
5. Self-Assembly of Mitochondria-Targeted Photosensitizer to Increase Photostability and Photodynamic Therapeutic Efficacy in Hypoxia. Jana B; Thomas AP; Kim S; Lee IS; Choi H; Jin S; Park SA; Min SK; Kim C; Ryu JH Chemistry; 2020 Aug; 26(47):10695-10701. PubMed ID: 32428292 [TBL] [Abstract][Full Text] [Related]
6. GSH and H Sun J; Du K; Diao J; Cai X; Feng F; Wang S Angew Chem Int Ed Engl; 2020 Jul; 59(29):12122-12128. PubMed ID: 32297412 [TBL] [Abstract][Full Text] [Related]
7. Activation by Glutathione in Hypoxic Environment of an Azo-based Rhodamine Activatable Photosensitizer. A Computational Elucidation. Ponte F; Mazzone G; Russo N; Sicilia E Chemistry; 2022 Mar; 28(13):e202104083. PubMed ID: 35040535 [TBL] [Abstract][Full Text] [Related]
8. Sensitization of Hypoxic Tumor to Photodynamic Therapy via Oxygen Self-Supply of Fluorinated Photosensitizers. Liu Z; Xue Y; Wu M; Yang G; Lan M; Zhang W Biomacromolecules; 2019 Dec; 20(12):4563-4573. PubMed ID: 31710484 [TBL] [Abstract][Full Text] [Related]
9. Rational design of type I photosensitizers based on Ru(ii) complexes for effective photodynamic therapy under hypoxia. Liu X; Li G; Xie M; Guo S; Zhao W; Li F; Liu S; Zhao Q Dalton Trans; 2020 Aug; 49(32):11192-11200. PubMed ID: 32748922 [TBL] [Abstract][Full Text] [Related]
10. A Mitochondria-Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia. Lv W; Zhang Z; Zhang KY; Yang H; Liu S; Xu A; Guo S; Zhao Q; Huang W Angew Chem Int Ed Engl; 2016 Aug; 55(34):9947-51. PubMed ID: 27381490 [TBL] [Abstract][Full Text] [Related]
11. Hypoxia-Responsive Photosensitizer Targeting Dual Organelles for Photodynamic Therapy of Tumors. Tang Y; Wang X; Zhu G; Liu Z; Chen XM; Bisoyi HK; Chen X; Chen X; Xu Y; Li J; Li Q Small; 2023 Jan; 19(1):e2205440. PubMed ID: 36285777 [TBL] [Abstract][Full Text] [Related]
12. Stepwise-activatable hypoxia triggered nanocarrier-based photodynamic therapy for effective synergistic bioreductive chemotherapy. Ihsanullah KM; Kumar BN; Zhao Y; Muhammad H; Liu Y; Wang L; Liu H; Jiang W Biomaterials; 2020 Jul; 245():119982. PubMed ID: 32224374 [TBL] [Abstract][Full Text] [Related]
13. Mitochondria-Targeting Selenophene-Modified BODIPY-Based Photosensitizers for the Treatment of Hypoxic Cancer Cells. Karaman O; Almammadov T; Emre Gedik M; Gunaydin G; Kolemen S; Gunbas G ChemMedChem; 2019 Nov; 14(22):1879-1886. PubMed ID: 31663667 [TBL] [Abstract][Full Text] [Related]
14. Photodynamic therapy for hypoxic solid tumors via Mn-MOF as a photosensitizer. Lu J; Yang L; Zhang W; Li P; Gao X; Zhang W; Wang H; Tang B Chem Commun (Camb); 2019 Sep; 55(72):10792-10795. PubMed ID: 31432816 [TBL] [Abstract][Full Text] [Related]
15. Cell membranes targeted unimolecular prodrug for programmatic photodynamic-chemo therapy. Yuan J; Peng R; Su D; Zhang X; Zhao H; Zhuang X; Chen M; Zhang X; Yuan L Theranostics; 2021; 11(7):3502-3511. PubMed ID: 33537100 [TBL] [Abstract][Full Text] [Related]
16. An intelligent dual stimuli-responsive photosensitizer delivery system with O Zhao H; Li L; Zheng C; Hao Y; Niu M; Hu Y; Chang J; Zhang Z; Wang L Colloids Surf B Biointerfaces; 2018 Jul; 167():299-309. PubMed ID: 29679806 [TBL] [Abstract][Full Text] [Related]
17. A Glutathione Activatable Photosensitizer for Combined Photodynamic and Gas Therapy under Red Light Irradiation. Wang R; Xia X; Yang Y; Rong X; Liu T; Su Z; Zeng X; Du J; Fan J; Sun W; Peng X Adv Healthc Mater; 2022 Feb; 11(4):e2102017. PubMed ID: 34812594 [TBL] [Abstract][Full Text] [Related]
18. Alkaline Phosphatase Activated Near-Infrared Frequency Upconversion Photosensitizers for Tumor Photodynamic Therapy. Zhao C; Sun W; Huang X; Liu Y; Wang HY J Med Chem; 2024 Aug; 67(15):13383-13391. PubMed ID: 39057921 [TBL] [Abstract][Full Text] [Related]
19. Recent Advances in Developing Photosensitizers for Photodynamic Cancer Therapy. Chen C; Wang J; Li X; Liu X; Han X Comb Chem High Throughput Screen; 2017; 20(5):414-422. PubMed ID: 28088891 [TBL] [Abstract][Full Text] [Related]
20. A next-generation bifunctional photosensitizer with improved water-solubility for photodynamic therapy and diagnosis. Nishie H; Kataoka H; Yano S; Kikuchi JI; Hayashi N; Narumi A; Nomoto A; Kubota E; Joh T Oncotarget; 2016 Nov; 7(45):74259-74268. PubMed ID: 27708235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]