These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 28872411)
1. Smartphone photography utilized to measure wrist range of motion. Wagner ER; Conti Mica M; Shin AY J Hand Surg Eur Vol; 2018 Feb; 43(2):187-192. PubMed ID: 28872411 [TBL] [Abstract][Full Text] [Related]
2. Wrist ROM measurements using smartphone photography: Reliability and validity. Ge M; Chen J; Zhu ZJ; Shi P; Yin LR; Xia L Hand Surg Rehabil; 2020 Sep; 39(4):261-264. PubMed ID: 32171926 [TBL] [Abstract][Full Text] [Related]
3. A Comparison of Elbow Range of Motion Measurements: Smartphone-Based Digital Photography Versus Goniometric Measurements. Meislin MA; Wagner ER; Shin AY J Hand Surg Am; 2016 Apr; 41(4):510-515.e1. PubMed ID: 26880499 [TBL] [Abstract][Full Text] [Related]
4. Accuracy and reliability of three different techniques for manual goniometry for wrist motion: a cadaveric study. Carter TI; Pansy B; Wolff AL; Hillstrom HJ; Backus SI; Lenhoff M; Wolfe SW J Hand Surg Am; 2009 Oct; 34(8):1422-8. PubMed ID: 19703734 [TBL] [Abstract][Full Text] [Related]
5. Remote Assessment of Wrist Range of Motion: Inter- and Intra-Observer Agreement of Provider Estimation and Direct Measurement With Photographs and Tracings. Scott KL; Skotak CM; Renfree KJ J Hand Surg Am; 2019 Nov; 44(11):954-965. PubMed ID: 31358397 [TBL] [Abstract][Full Text] [Related]
6. Smartphone Photography as a Tool to Measure Knee Range of Motion. Mica MC; Wagner ER; Shin AY J Surg Orthop Adv; 2018; 27(1):52-57. PubMed ID: 29762117 [TBL] [Abstract][Full Text] [Related]
7. Reliability and concurrent validity of a new iPhone Pourahmadi MR; Ebrahimi Takamjani I; Sarrafzadeh J; Bahramian M; Mohseni-Bandpei MA; Rajabzadeh F; Taghipour M J Anat; 2017 Mar; 230(3):484-495. PubMed ID: 27910103 [TBL] [Abstract][Full Text] [Related]
8. Measurement of finger joint motion after flexor tendon repair: smartphone photography compared with traditional goniometry. Chen J; Xian Zhang A; Jia Qian S; Jing Wang Y J Hand Surg Eur Vol; 2021 Oct; 46(8):825-829. PubMed ID: 33557680 [TBL] [Abstract][Full Text] [Related]
9. Viability of Hand and Wrist Photogoniometry. Meals CG; Saunders RJ; Desale S; Means KR Hand (N Y); 2018 May; 13(3):301-304. PubMed ID: 28391753 [TBL] [Abstract][Full Text] [Related]
10. Self-measured wrist range of motion by wrist-injured and wrist-healthy study participants using a built-in iPhone feature as compared with a universal goniometer. Modest J; Clair B; DeMasi R; Meulenaere S; Howley A; Aubin M; Jones M J Hand Ther; 2019; 32(4):507-514. PubMed ID: 30017418 [TBL] [Abstract][Full Text] [Related]
11. Validity and Intrarater Reliability Using a Smartphone Clinometer Application to Measure Active Cervical Range of Motion Including Rotation Measurements in Supine. Monreal C; Luinstra L; Larkins L; May J J Sport Rehabil; 2020 Sep; 30(4):680-684. PubMed ID: 32932236 [TBL] [Abstract][Full Text] [Related]
12. Validation of a photography-based goniometry method for measuring joint range of motion. Blonna D; Zarkadas PC; Fitzsimmons JS; O'Driscoll SW J Shoulder Elbow Surg; 2012 Jan; 21(1):29-35. PubMed ID: 21983191 [TBL] [Abstract][Full Text] [Related]
13. At Home Photography-Based Method for Measuring Wrist Range of Motion. Trehan SK; Rancy SK; Johnsen PH; Hillstrom HJ; Lee SK; Wolfe SW J Wrist Surg; 2017 Nov; 6(4):280-284. PubMed ID: 29085729 [No Abstract] [Full Text] [Related]
14. Validity and reliability of smartphone magnetometer-based goniometer evaluation of shoulder abduction--A pilot study. Johnson LB; Sumner S; Duong T; Yan P; Bajcsy R; Abresch RT; de Bie E; Han JJ Man Ther; 2015 Dec; 20(6):777-82. PubMed ID: 25835780 [TBL] [Abstract][Full Text] [Related]
15. Remote self-measurement of wrist range of motion performed on normal wrists by a minimally trained individual using the iPhone level application only demonstrated good reliability in measuring wrist flexion and extension. Alford SL J Hand Ther; 2021; 34(4):549-554. PubMed ID: 32883544 [TBL] [Abstract][Full Text] [Related]
16. Influence of Wrist Position on the Metacarpophalangeal Joint Motion of the Index Through Small Finger. Latz D; Koukos C; Boeckers P; Jungbluth P; Schiffner E; Kaufmann R; Gehrmann SV Hand (N Y); 2019 Mar; 14(2):259-263. PubMed ID: 29072491 [TBL] [Abstract][Full Text] [Related]
17. Range of Motion Measurements of the Fingers Via Smartphone Photography. Zhao JZ; Blazar PE; Mora AN; Earp BE Hand (N Y); 2020 Sep; 15(5):679-685. PubMed ID: 30688093 [No Abstract] [Full Text] [Related]
18. Is digital photography an accurate and precise method for measuring range of motion of the shoulder and elbow? Russo RR; Burn MB; Ismaily SK; Gerrie BJ; Han S; Alexander J; Lenherr C; Noble PC; Harris JD; McCulloch PC J Orthop Sci; 2018 Mar; 23(2):310-315. PubMed ID: 29274738 [TBL] [Abstract][Full Text] [Related]
19. Reliability of a human pose tracking algorithm for measuring upper limb joints: comparison with photography-based goniometry. Fan J; Gu F; Lv L; Zhang Z; Zhu C; Qi J; Wang H; Liu X; Yang J; Zhu Q BMC Musculoskelet Disord; 2022 Sep; 23(1):877. PubMed ID: 36131313 [TBL] [Abstract][Full Text] [Related]