BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 2887249)

  • 1. Development of gamma-aminobutyric acid (GABA)ergic neurons in cerebral cortical neurons in primary culture.
    Kuriyama K; Tomono S; Kishi M; Mukainaka T; Ohkuma S
    Brain Res; 1987 Jul; 416(1):7-21. PubMed ID: 2887249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alcohol, acetaldehyde and salsolinol-induced alterations in functions of cerebral GABA/benzodiazepine receptor complex.
    Kuriyama K; Ohkuma S; Taguchi J; Hashimoto T
    Physiol Behav; 1987; 40(3):393-9. PubMed ID: 2889235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic neurosteroid treatment produces functional heterologous uncoupling at the gamma-aminobutyric acid type A/benzodiazepine receptor complex in mammalian cortical neurons.
    Yu R; Ticku MK
    Mol Pharmacol; 1995 Mar; 47(3):603-10. PubMed ID: 7700257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical correlates of GABA function in rat cortical neurons in culture.
    Snodgrass SR; White WF; Biales B; Dichter M
    Brain Res; 1980 May; 190(1):123-38. PubMed ID: 7378734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postnatal development of GABA-ergic neurons in the rabbit retina.
    Lam DM; Fung SC; Kong YC
    J Comp Neurol; 1980 Sep; 193(1):89-102. PubMed ID: 6253533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate decarboxylase immunoreactivity and gamma-[3H] aminobutyric acid accumulation within the same neurons in dissociated cell cultures of cerebral cortex.
    Neale EA; Oertel WH; Bowers LM; Weise VK
    J Neurosci; 1983 Feb; 3(2):376-82. PubMed ID: 6822868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental changes of GABAergic synapses formed between primary cultured cortical neurons.
    Kato-Negishi M; Muramoto K; Kawahara M; Kuroda Y; Ichikawa M
    Brain Res Dev Brain Res; 2004 Sep; 152(2):99-108. PubMed ID: 15351497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attenuation of γ-aminobutyric acid (GABA) transaminase activity contributes to GABA increase in the cerebral cortex of mice exposed to β-cypermethrin.
    Han Y; Cao D; Li X; Zhang R; Yu F; Ren Y; An L
    Hum Exp Toxicol; 2014 Mar; 33(3):317-24. PubMed ID: 24220872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of GABA neurons in rat cortical cultures by GABA uptake autoradiography.
    White WF; Snodgrass SR; Dichter M
    Brain Res; 1980 May; 190(1):139-52. PubMed ID: 6247007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased binding of [3H]muscimol and [3H]flunitrazepam in the rat brain under hypoxia.
    Ninomiya H; Taniguchi T; Kameyama M; Fujiwara M
    J Neurochem; 1988 Oct; 51(4):1111-7. PubMed ID: 2843604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased intracellular gamma-aminobutyric acid selectively lowers the level of the larger of two glutamate decarboxylase proteins in cultured GABAergic neurons from rat cerebral cortex.
    Rimvall K; Martin DL
    J Neurochem; 1992 Jan; 58(1):158-66. PubMed ID: 1727428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotransmitter changes during development of cortical neuronal cultures.
    Boespflug O; Swaiman KF
    Dev Neurosci; 1986; 8(2):102-10. PubMed ID: 2874978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and differential regulation of GABAA and benzodiazepine receptors in rat neocortex.
    Shaw C; Scarth BA
    Brain Res Mol Brain Res; 1991 Oct; 11(3-4):273-82. PubMed ID: 1684629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental aspects of benzodiazepine receptors and GABA-gated chloride channels in primary cultures of spinal cord neurons.
    Mehta AK; Ticku MK
    Brain Res; 1988 Jun; 454(1-2):156-63. PubMed ID: 2457408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacologic characterization of GABAA/benzodiazepine receptor in rat hippocampus during aging.
    Ruano D; Cano J; Machado A; Vitorica J
    J Pharmacol Exp Ther; 1991 Mar; 256(3):902-8. PubMed ID: 1848632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic GABAergic system of adrenal chromaffin cells.
    Kataoka Y; Gutman Y; Guidotti A; Panula P; Wroblewski J; Cosenza-Murphy D; Wu JY; Costa E
    Proc Natl Acad Sci U S A; 1984 May; 81(10):3218-22. PubMed ID: 6328506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic GABA exposure down-regulates GABA-benzodiazepine receptor-ionophore complex in cultured cerebral cortical neurons.
    Mehta AK; Ticku MK
    Brain Res Mol Brain Res; 1992 Nov; 16(1-2):29-36. PubMed ID: 1334197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogeny of the GABA receptor complex in chick brain: studies in vivo and in vitro.
    Tehrani MH; Barnes EM
    Brain Res; 1986 Feb; 390(1):91-8. PubMed ID: 3004673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of nitric oxide on GABA, glutamic acid, activities of GABA-T and GAD in rat brain cerebral cortex.
    Jayakumar AR; Sujatha R; Paul V; Asokan C; Govindasamy S; Jayakumar R
    Brain Res; 1999 Aug; 837(1-2):229-35. PubMed ID: 10434007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. gamma-Aminobutyric acid concentration, L-glutamate 1-decarboxylase activity, and properties of the gamma-aminobutyric and postsynaptic receptor in cobalt epilepsy in the rat.
    Ross SM; Craig CR
    J Neurosci; 1981 Dec; 1(12):1388-96. PubMed ID: 6275045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.