These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO. Hansen HA; Varley JB; Peterson AA; Nørskov JK J Phys Chem Lett; 2013 Feb; 4(3):388-92. PubMed ID: 26281729 [TBL] [Abstract][Full Text] [Related]
3. On the mechanism of high product selectivity for HCOOH using Pb in CO2 electroreduction. Back S; Kim JH; Kim YT; Jung Y Phys Chem Chem Phys; 2016 Apr; 18(14):9652-7. PubMed ID: 26996154 [TBL] [Abstract][Full Text] [Related]
4. Density functional theory study of carbon dioxide electrochemical reduction on the Fe(100) surface. Bernstein NJ; Akhade SA; Janik MJ Phys Chem Chem Phys; 2014 Jul; 16(27):13708-17. PubMed ID: 24722651 [TBL] [Abstract][Full Text] [Related]
6. Poisoning effect of adsorbed CO during CO2 electroreduction on late transition metals. Akhade SA; Luo W; Nie X; Bernstein NJ; Asthagiri A; Janik MJ Phys Chem Chem Phys; 2014 Oct; 16(38):20429-35. PubMed ID: 25165989 [TBL] [Abstract][Full Text] [Related]
7. Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid. Yoo JS; Christensen R; Vegge T; Nørskov JK; Studt F ChemSusChem; 2016 Feb; 9(4):358-63. PubMed ID: 26663854 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic Insights into the Unique Role of Copper in CO Liu SP; Zhao M; Gao W; Jiang Q ChemSusChem; 2017 Jan; 10(2):387-393. PubMed ID: 27943655 [TBL] [Abstract][Full Text] [Related]
9. Catalyst Particle Density Controls Hydrocarbon Product Selectivity in CO Wang X; Varela AS; Bergmann A; Kühl S; Strasser P ChemSusChem; 2017 Nov; 10(22):4642-4649. PubMed ID: 28776946 [TBL] [Abstract][Full Text] [Related]
11. Rational Design and Effective Control of Gold-Based Bimetallic Electrocatalyst for Boosting CO Guo C; Zhang T; Lu X; Wu CL ChemSusChem; 2021 Jul; 14(13):2731-2739. PubMed ID: 33931946 [TBL] [Abstract][Full Text] [Related]
12. On the Role of Sulfur for the Selective Electrochemical Reduction of CO Deng Y; Huang Y; Ren D; Handoko AD; Seh ZW; Hirunsit P; Yeo BS ACS Appl Mater Interfaces; 2018 Aug; 10(34):28572-28581. PubMed ID: 30125083 [TBL] [Abstract][Full Text] [Related]
13. The importance of grand-canonical quantum mechanical methods to describe the effect of electrode potential on the stability of intermediates involved in both electrochemical CO Zhang H; Goddard WA; Lu Q; Cheng MJ Phys Chem Chem Phys; 2018 Jan; 20(4):2549-2557. PubMed ID: 29318230 [TBL] [Abstract][Full Text] [Related]
14. Interface Engineering of Earth-Abundant Transition Metals Using Boron Nitride for Selective Electroreduction of CO Hu G; Wu Z; Dai S; Jiang DE ACS Appl Mater Interfaces; 2018 Feb; 10(7):6694-6700. PubMed ID: 29385799 [TBL] [Abstract][Full Text] [Related]
15. CO Binding Energy is an Incomplete Descriptor of Cu-Based Catalysts for the Electrochemical CO Gao W; Xu Y; Xiong H; Chang X; Lu Q; Xu B Angew Chem Int Ed Engl; 2023 Nov; 62(47):e202313798. PubMed ID: 37837328 [TBL] [Abstract][Full Text] [Related]
16. Tuning the activity and selectivity of electroreduction of CO Lee JH; Kattel S; Jiang Z; Xie Z; Yao S; Tackett BM; Xu W; Marinkovic NS; Chen JG Nat Commun; 2019 Aug; 10(1):3724. PubMed ID: 31427576 [TBL] [Abstract][Full Text] [Related]
17. Cation Effects on the Adsorbed Intermediates of CO Sargeant E; Rodriguez P; Calle-Vallejo F ACS Catal; 2024 Jun; 14(11):8814-8822. PubMed ID: 38868103 [TBL] [Abstract][Full Text] [Related]