These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28872756)

  • 21. Oxygen Vacancy-Driven Heterointerface Breaks the Linear-Scaling Relationship of Intermediates toward Electrocatalytic CO
    Tang YF; Liu S; Yu M; Sui PF; Fu XZ; Luo JL; Liu S
    ACS Appl Mater Interfaces; 2024 Aug; 16(31):41669-41676. PubMed ID: 39044405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Achieving Tunable Selectivity and Activity of CO
    Li M; Hu Y; Dong G; Wu T; Geng D
    Small; 2023 Apr; 19(15):e2207242. PubMed ID: 36631289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positively charged silver improve carbon dioxide electroreduction reaction performance by introducing phosphate.
    Du H; Yu Q; Yang J; Zhang Y; Yuan J; She Y; Li H; Xu H
    J Colloid Interface Sci; 2022 Mar; 609():65-74. PubMed ID: 34890951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reaction Mechanisms for the Electrochemical Reduction of CO
    Cheng T; Xiao H; Goddard WA
    J Am Chem Soc; 2016 Oct; 138(42):13802-13805. PubMed ID: 27726392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistic insights into electrochemical reduction of CO
    Singh MR; Goodpaster JD; Weber AZ; Head-Gordon M; Bell AT
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):E8812-E8821. PubMed ID: 28973926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 2D Covalent Metals: A New Materials Domain of Electrochemical CO
    Shin H; Ha Y; Kim H
    J Phys Chem Lett; 2016 Oct; 7(20):4124-4129. PubMed ID: 27676244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The importance of a charge transfer descriptor for screening potential CO
    Ringe S
    Nat Commun; 2023 May; 14(1):2598. PubMed ID: 37147278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying robustness of DFT predicted pathways and activity determining elementary steps for electrochemical reactions.
    Krishnamurthy D; Sumaria V; Viswanathan V
    J Chem Phys; 2019 Jan; 150(4):041717. PubMed ID: 30709276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tailoring Metalloporphyrin Frameworks for an Efficient Carbon Dioxide Electroreduction: Selectively Stabilizing Key Intermediates with H-Bonding Pockets.
    Wannakao S; Jumpathong W; Kongpatpanich K
    Inorg Chem; 2017 Jun; 56(12):7200-7209. PubMed ID: 28569508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic Understanding of Catalytic Selectivity and Product Distribution of Electrochemical Carbon Dioxide Reduction Reaction.
    Su DJ; Xiang SQ; Gao ST; Jiang Y; Liu X; Zhang W; Zhao LB; Tian ZQ
    JACS Au; 2023 Mar; 3(3):905-918. PubMed ID: 37006754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electroreduction of Carbon Dioxide to Hydrocarbons Using Bimetallic Cu-Pd Catalysts with Different Mixing Patterns.
    Ma S; Sadakiyo M; Heima M; Luo R; Haasch RT; Gold JI; Yamauchi M; Kenis PJ
    J Am Chem Soc; 2017 Jan; 139(1):47-50. PubMed ID: 27958727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gold Nanoparticles on Polymer-Wrapped Carbon Nanotubes: An Efficient and Selective Catalyst for the Electroreduction of CO
    Jhong HM; Tornow CE; Kim C; Verma S; Oberst JL; Anderson PS; Gewirth AA; Fujigaya T; Nakashima N; Kenis PJA
    Chemphyschem; 2017 Nov; 18(22):3274-3279. PubMed ID: 28985010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical interfacial influences on deoxygenation and hydrogenation reactions in CO reduction on a Cu(100) surface.
    Sheng T; Lin WF; Sun SG
    Phys Chem Chem Phys; 2016 Jun; 18(22):15304-11. PubMed ID: 27211005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Origin of the overpotentials for HCOO
    Liu L; Liu C
    Phys Chem Chem Phys; 2018 Feb; 20(8):5756-5765. PubMed ID: 29411803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling the effect of surface CO coverage on the electrocatalytic reduction of CO
    Liu H; Liu J; Yang B
    Phys Chem Chem Phys; 2019 May; 21(19):9876-9882. PubMed ID: 31033988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4.
    Li W; Seredych M; Rodríguez-Castellón E; Bandosz TJ
    ChemSusChem; 2016 Mar; 9(6):606-16. PubMed ID: 26835880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles.
    Mistry H; Reske R; Zeng Z; Zhao ZJ; Greeley J; Strasser P; Cuenya BR
    J Am Chem Soc; 2014 Nov; 136(47):16473-6. PubMed ID: 25325519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing CO
    Gao D; Zhang Y; Zhou Z; Cai F; Zhao X; Huang W; Li Y; Zhu J; Liu P; Yang F; Wang G; Bao X
    J Am Chem Soc; 2017 Apr; 139(16):5652-5655. PubMed ID: 28391686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational insights into the strain effect on the electrocatalytic reduction of CO
    Liu H; Liu J; Yang B
    Phys Chem Chem Phys; 2020 May; 22(17):9600-9606. PubMed ID: 32322855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Nitrogen-Doped Carbon Catalyst for Electrochemical CO
    Jhong HM; Tornow CE; Smid B; Gewirth AA; Lyth SM; Kenis PJ
    ChemSusChem; 2017 Mar; 10(6):1094-1099. PubMed ID: 27791338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.