These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 28872830)

  • 21. Enhanced Plasmonic Particle Trapping Using a Hybrid Structure of Nanoparticles and Nanorods.
    Lee SY; Kim HM; Park J; Kim SK; Youn JR; Song YS
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41655-41663. PubMed ID: 30404444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy.
    Parida S; Maiti C; Rajesh Y; Dey KK; Pal I; Parekh A; Patra R; Dhara D; Dutta PK; Mandal M
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt A):3039-3052. PubMed ID: 27721046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.
    Maity S; Wu WC; Tracy JB; Clarke LI; Bochinski JR
    Nanoscale; 2017 Aug; 9(32):11605-11618. PubMed ID: 28770914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative optical trapping of single gold nanorods.
    Selhuber-Unkel C; Zins I; Schubert O; Sönnichsen C; Oddershede LB
    Nano Lett; 2008 Sep; 8(9):2998-3003. PubMed ID: 18720978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selecting High-Performance Gold Nanorods for Photothermal Conversion.
    Pedrosa TL; Farooq S; de Araujo RE
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal Reshaping Dynamics of Gold Nanorods: Influence of Size, Shape, and Local Environment.
    Kennedy WJ; Izor S; Anderson BD; Frank G; Varshney V; Ehlert GJ
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43865-43873. PubMed ID: 30480429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy.
    Van de Broek B; Grandjean D; Trekker J; Ye J; Verstreken K; Maes G; Borghs G; Nikitenko S; Lagae L; Bartic C; Temst K; Van Bael MJ
    Small; 2011 Sep; 7(17):2498-506. PubMed ID: 21744495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Orientation Sensing with Color Using Plasmonic Gold Nanorods and Assemblies.
    Biswas S; Nepal D; Park K; Vaia RA
    J Phys Chem Lett; 2012 Sep; 3(18):2568-74. PubMed ID: 26295876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers.
    Bendix PM; Reihani SN; Oddershede LB
    ACS Nano; 2010 Apr; 4(4):2256-62. PubMed ID: 20369898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and optical properties of worm-like gold nanorods.
    Huang H; He C; Zeng Y; Xia X; Yu X; Yi P; Chen Z
    J Colloid Interface Sci; 2008 Jun; 322(1):136-42. PubMed ID: 18400232
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors.
    Chou CH; Chen CD; Wang CR
    J Phys Chem B; 2005 Jun; 109(22):11135-8. PubMed ID: 16852358
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Absorption Spectroscopy of Single Optically Trapped Gold Nanorods.
    Li Z; Mao W; Devadas MS; Hartland GV
    Nano Lett; 2015 Nov; 15(11):7731-5. PubMed ID: 26495877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces.
    Horiguchi Y; Honda K; Kato Y; Nakashima N; Niidome Y
    Langmuir; 2008 Oct; 24(20):12026-31. PubMed ID: 18759472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential-Scanning Localized Plasmon Sensing with Single and Coupled Gold Nanorods.
    Kawawaki T; Zhang H; Nishi H; Mulvaney P; Tatsuma T
    J Phys Chem Lett; 2017 Aug; 8(15):3637-3641. PubMed ID: 28730812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions of Bacterial Lipopolysaccharides with Gold Nanorod Surfaces Investigated by Refractometric Sensing.
    Abadeer NS; Fülöp G; Chen S; Käll M; Murphy CJ
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24915-25. PubMed ID: 26488238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tunable-wavelength nanosecond laser tailoring of plasmon resonance spectra of gold nanoparticle colloids.
    Sukmanee T; Szuster M; Gorski A; Hołdyński M; Gawinkowski S
    Nanoscale Adv; 2023 Jul; 5(14):3697-3704. PubMed ID: 37441263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmon enhanced optical tweezers with gold-coated black silicon.
    Kotsifaki DG; Kandyla M; Lagoudakis PG
    Sci Rep; 2016 May; 6():26275. PubMed ID: 27195446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiphysics Modeling of Plasmonic Photothermal Heating Effects in Gold Nanoparticles and Nanoparticle Arrays.
    Manrique-Bedoya S; Abdul-Moqueet M; Lopez P; Gray T; Disiena M; Locker A; Kwee S; Tang L; Hood RL; Feng Y; Large N; Mayer KM
    J Phys Chem C Nanomater Interfaces; 2020 Aug; 124(31):17172-17182. PubMed ID: 34367407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brownian fluctuations and heating of an optically aligned gold nanorod.
    Ruijgrok PV; Verhart NR; Zijlstra P; Tchebotareva AL; Orrit M
    Phys Rev Lett; 2011 Jul; 107(3):037401. PubMed ID: 21838403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout.
    Taylor AB; Kim J; Chon JW
    Opt Express; 2012 Feb; 20(5):5069-81. PubMed ID: 22418312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.