These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 28872869)
1. Demystifying Multitask Deep Neural Networks for Quantitative Structure-Activity Relationships. Xu Y; Ma J; Liaw A; Sheridan RP; Svetnik V J Chem Inf Model; 2017 Oct; 57(10):2490-2504. PubMed ID: 28872869 [TBL] [Abstract][Full Text] [Related]
2. Deep neural nets as a method for quantitative structure-activity relationships. Ma J; Sheridan RP; Liaw A; Dahl GE; Svetnik V J Chem Inf Model; 2015 Feb; 55(2):263-74. PubMed ID: 25635324 [TBL] [Abstract][Full Text] [Related]
3. Prediction of Human Cytochrome P450 Inhibition Using a Multitask Deep Autoencoder Neural Network. Li X; Xu Y; Lai L; Pei J Mol Pharm; 2018 Oct; 15(10):4336-4345. PubMed ID: 29775322 [TBL] [Abstract][Full Text] [Related]
4. Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets. Wenzel J; Matter H; Schmidt F J Chem Inf Model; 2019 Mar; 59(3):1253-1268. PubMed ID: 30615828 [TBL] [Abstract][Full Text] [Related]
5. Prediction of Compound Profiling Matrices, Part II: Relative Performance of Multitask Deep Learning and Random Forest Classification on the Basis of Varying Amounts of Training Data. Rodríguez-Pérez R; Bajorath J ACS Omega; 2018 Sep; 3(9):12033-12040. PubMed ID: 30320286 [TBL] [Abstract][Full Text] [Related]
6. Validation Study of QSAR/DNN Models Using the Competition Datasets. Kato Y; Hamada S; Goto H Mol Inform; 2020 Jan; 39(1-2):e1900154. PubMed ID: 31802634 [TBL] [Abstract][Full Text] [Related]
7. Dissecting Machine-Learning Prediction of Molecular Activity: Is an Applicability Domain Needed for Quantitative Structure-Activity Relationship Models Based on Deep Neural Networks? Liu R; Wang H; Glover KP; Feasel MG; Wallqvist A J Chem Inf Model; 2019 Jan; 59(1):117-126. PubMed ID: 30412667 [TBL] [Abstract][Full Text] [Related]
8. Deep learning for predicting toxicity of chemicals: a mini review. Tang W; Chen J; Wang Z; Xie H; Hong H J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):252-271. PubMed ID: 30821199 [TBL] [Abstract][Full Text] [Related]
9. Quantitative Toxicity Prediction Using Topology Based Multitask Deep Neural Networks. Wu K; Wei GW J Chem Inf Model; 2018 Feb; 58(2):520-531. PubMed ID: 29314829 [TBL] [Abstract][Full Text] [Related]
10. The role of different sampling methods in improving biological activity prediction using deep belief network. Ghasemi F; Fassihi A; Pérez-Sánchez H; Mehri Dehnavi A J Comput Chem; 2017 Feb; 38(4):195-203. PubMed ID: 27862046 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds. Ventura C; Latino DA; Martins F Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731 [TBL] [Abstract][Full Text] [Related]
12. Assessing Deep and Shallow Learning Methods for Quantitative Prediction of Acute Chemical Toxicity. Liu R; Madore M; Glover KP; Feasel MG; Wallqvist A Toxicol Sci; 2018 Aug; 164(2):512-526. PubMed ID: 29722883 [TBL] [Abstract][Full Text] [Related]
13. Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets. Zhou Y; Cahya S; Combs SA; Nicolaou CA; Wang J; Desai PV; Shen J J Chem Inf Model; 2019 Mar; 59(3):1005-1016. PubMed ID: 30586300 [TBL] [Abstract][Full Text] [Related]
14. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications. Pastur-Romay LA; Cedrón F; Pazos A; Porto-Pazos AB Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27529225 [TBL] [Abstract][Full Text] [Related]
15. Mechanistic Task Groupings Enhance Multitask Deep Learning of Strain-Specific Ames Mutagenicity. Lui R; Guan D; Matthews S Chem Res Toxicol; 2023 Aug; 36(8):1248-1254. PubMed ID: 37478285 [TBL] [Abstract][Full Text] [Related]
16. A Hierarchical Multitask Learning Approach for the Recognition of Activities of Daily Living Using Data from Wearable Sensors. Nisar MA; Shirahama K; Irshad MT; Huang X; Grzegorzek M Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837064 [TBL] [Abstract][Full Text] [Related]
17. Symbolic Deep Networks: A Psychologically Inspired Lightweight and Efficient Approach to Deep Learning. Veksler VD; Hoffman BE; Buchler N Top Cogn Sci; 2022 Oct; 14(4):702-717. PubMed ID: 34609080 [TBL] [Abstract][Full Text] [Related]
19. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR. Winkler DA; Le TC Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 27783464 [TBL] [Abstract][Full Text] [Related]
20. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments. Jozwik KM; Kriegeskorte N; Storrs KR; Mur M Front Psychol; 2017; 8():1726. PubMed ID: 29062291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]