These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Vivid, full-color aluminum plasmonic pixels. Olson J; Manjavacas A; Liu L; Chang WS; Foerster B; King NS; Knight MW; Nordlander P; Halas NJ; Link S Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14348-53. PubMed ID: 25225385 [TBL] [Abstract][Full Text] [Related]
5. The Plasmonic Pixel: Large Area, Wide Gamut Color Reproduction Using Aluminum Nanostructures. James TD; Mulvaney P; Roberts A Nano Lett; 2016 Jun; 16(6):3817-23. PubMed ID: 27164410 [TBL] [Abstract][Full Text] [Related]
6. Stretchable Biaxial and Shear Strain Sensors Using Diffractive Structural Colors. Quan YJ; Kim YG; Kim MS; Min SH; Ahn SH ACS Nano; 2020 May; 14(5):5392-5399. PubMed ID: 32275387 [TBL] [Abstract][Full Text] [Related]
8. Scalable and controlled self-assembly of aluminum-based random plasmonic metasurfaces. Siddique RH; Mertens J; Hölscher H; Vignolini S Light Sci Appl; 2017 Jul; 6(7):e17015. PubMed ID: 30167271 [TBL] [Abstract][Full Text] [Related]
9. Stretchable All-Dielectric Metasurfaces with Polarization-Insensitive and Full-Spectrum Response. Zhang C; Jing J; Wu Y; Fan Y; Yang W; Wang S; Song Q; Xiao S ACS Nano; 2020 Feb; 14(2):1418-1426. PubMed ID: 31877022 [TBL] [Abstract][Full Text] [Related]
10. Broadband scattering by an aluminum nanoparticle array as a white pixel in commercial color printing applications. Zhang F; Martin J; Murai S; Plain J; Tanaka K Opt Express; 2020 Aug; 28(18):25989-25997. PubMed ID: 32906876 [TBL] [Abstract][Full Text] [Related]
11. Plasmonics-Based Multifunctional Electrodes for Low-Power-Consumption Compact Color-Image Sensors. Lin KT; Chen HL; Lai YS; Chi YM; Chu TW ACS Appl Mater Interfaces; 2016 Mar; 8(10):6718-26. PubMed ID: 26925762 [TBL] [Abstract][Full Text] [Related]
12. Polarization-tuned Dynamic Color Filters Incorporating a Dielectric-loaded Aluminum Nanowire Array. Raj Shrestha V; Lee SS; Kim ES; Choi DY Sci Rep; 2015 Jul; 5():12450. PubMed ID: 26211625 [TBL] [Abstract][Full Text] [Related]
13. Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics. Feng D; Zhang H; Xu S; Tian L; Song N Nanotechnology; 2017 Mar; 28(11):115703. PubMed ID: 28195075 [TBL] [Abstract][Full Text] [Related]
14. Multifunctional Silicon Optoelectronics Integrated with Plasmonic Scattering Color. Wen L; Chen Q; Hu X; Wang H; Jin L; Su Q ACS Nano; 2016 Dec; 10(12):11076-11086. PubMed ID: 28024346 [TBL] [Abstract][Full Text] [Related]
15. Electrically Tunable All-PCM Visible Plasmonics. Sreekanth KV; Medwal R; Das CM; Gupta M; Mishra M; Yong KT; Rawat RS; Singh R Nano Lett; 2021 May; 21(9):4044-4050. PubMed ID: 33900781 [TBL] [Abstract][Full Text] [Related]
16. Incident-angle dependent color tuning from a single plasmonic chip. Si G; Zhao Y; Leong ES; Lv J; Jun Liu Y Nanotechnology; 2014 Nov; 25(45):455203. PubMed ID: 25338025 [TBL] [Abstract][Full Text] [Related]
17. Analyses of postbuckling in stretchable arrays of nanostructures for wide-band tunable plasmonics. Shi Y; Luo H; Gao L; Gao C; Rogers JA; Huang Y; Zhang Y Proc Math Phys Eng Sci; 2015 Nov; 471(2183):20150632. PubMed ID: 31474805 [TBL] [Abstract][Full Text] [Related]