These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 28873212)

  • 1. Simulation analysis of rectifying microfluidic mixing with field-effect-tunable electrothermal induced flow.
    Liu W; Ren Y; Tao Y; Yao B; Li Y
    Electrophoresis; 2018 Mar; 39(5-6):779-793. PubMed ID: 28873212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced model-based design of a high-throughput three dimensional micromixer driven by alternating-current electrothermal flow.
    Wu Y; Ren Y; Jiang H
    Electrophoresis; 2017 Jan; 38(2):258-269. PubMed ID: 27387819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid mixing with high-throughput in a semi-active semi-passive micromixer.
    Kunti G; Bhattacharya A; Chakraborty S
    Electrophoresis; 2017 May; 38(9-10):1310-1317. PubMed ID: 28256732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Bipolar DC Flow Field-Effect-Transistor for Multifunctional Sample Handing in Microfluidics: A Theoretical Analysis under the Debye⁻Huckel Limit.
    Liu W; Wu Q; Ren Y; Cui P; Yao B; Li Y; Hui M; Jiang T; Bai L
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics.
    Liu W; Shao J; Ren Y; Liu J; Tao Y; Jiang H; Ding Y
    Biomicrofluidics; 2016 May; 10(3):034105. PubMed ID: 27190570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroosmotic mixing in microchannels.
    Glasgow I; Batton J; Aubry N
    Lab Chip; 2004 Dec; 4(6):558-62. PubMed ID: 15570365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrothermal pumping with interdigitated electrodes and resistive heaters.
    Williams SJ; Green NG
    Electrophoresis; 2015 Aug; 36(15):1681-9. PubMed ID: 26010255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous Pumping and Mixing of Biological Fluids in a Double-Array Electrothermal Microfluidic Device.
    Salari A; Dalton C
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30696037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel micromixer based on the alternating current-flow field effect transistor.
    Wu Y; Ren Y; Tao Y; Hou L; Hu Q; Jiang H
    Lab Chip; 2016 Dec; 17(1):186-197. PubMed ID: 27934980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A High-Throughput Electrokinetic Micromixer via AC Field-Effect Nonlinear Electroosmosis Control in 3D Electrode Configurations.
    Du K; Liu W; Ren Y; Jiang T; Song J; Wu Q; Tao Y
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient AC electrothermal flow (ACET) on-chip for enhanced immunoassays.
    Draz MS; Uning K; Dupouy D; Gijs MAM
    Lab Chip; 2023 Mar; 23(6):1637-1648. PubMed ID: 36644814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrode Cooling Effect on Out-Of-Phase Electrothermal Streaming in Rotating Electric Fields.
    Liu W; Ren Y; Tao Y; Chen X; Wu Q
    Micromachines (Basel); 2017 Nov; 8(11):. PubMed ID: 30400517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microscopic physical description of electrothermal-induced flow for control of ion current transport in microfluidics interfacing nanofluidics.
    Liu W; Ren Y; Chen F; Song J; Tao Y; Du K; Wu Q
    Electrophoresis; 2019 Oct; 40(20):2683-2698. PubMed ID: 30883820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels.
    Ng WY; Goh S; Lam YC; Yang C; Rodríguez I
    Lab Chip; 2009 Mar; 9(6):802-9. PubMed ID: 19255662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics in structured multimaterial fibers.
    Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs.
    Sun T; Green NG; Gawad S; Morgan H
    IET Nanobiotechnol; 2007 Oct; 1(5):69-79. PubMed ID: 17764376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced electrothermal pumping with thin film resistive heaters.
    Williams SJ
    Electrophoresis; 2013 May; 34(9-10):1400-8. PubMed ID: 23576002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal design of microgrooved channels with electrokinetic pumping for lab-on-a-chip applications.
    Du E; Manoochehri S
    IET Nanobiotechnol; 2010 Jun; 4(2):40-9. PubMed ID: 20499997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.