These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 28873212)

  • 21. On AC-Field-Induced Nonlinear Electroosmosis next to the Sharp Corner-Field-Singularity of Leaky Dielectric Blocks and Its Application in on-Chip Micro-Mixing.
    Ren Y; Liu W; Tao Y; Hui M; Wu Q
    Micromachines (Basel); 2018 Feb; 9(3):. PubMed ID: 30424036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.
    Liao C; Hu S
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Convex Grooves in Staggered Herringbone Mixer Improve Mixing Efficiency of Laminar Flow in Microchannel.
    Kwak TJ; Nam YG; Najera MA; Lee SW; Strickler JR; Chang WJ
    PLoS One; 2016; 11(11):e0166068. PubMed ID: 27814386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micromixing within microfluidic devices.
    Capretto L; Cheng W; Hill M; Zhang X
    Top Curr Chem; 2011; 304():27-68. PubMed ID: 21526435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review: Electric field driven pumping in microfluidic device.
    Hossan MR; Dutta D; Islam N; Dutta P
    Electrophoresis; 2018 Mar; 39(5-6):702-731. PubMed ID: 29130508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biofluid pumping and mixing by an AC electrothermal micropump embedded with a spiral microelectrode pair in a cylindrical microchannel.
    Gao X; Li Y
    Electrophoresis; 2018 Dec; 39(24):3156-3170. PubMed ID: 30194859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical and experimental characterization of a novel modular passive micromixer.
    Pennella F; Rossi M; Ripandelli S; Rasponi M; Mastrangelo F; Deriu MA; Ridolfi L; Kähler CJ; Morbiducci U
    Biomed Microdevices; 2012 Oct; 14(5):849-62. PubMed ID: 22711456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel.
    Lin YC; Chung YC; Wu CY
    Biomed Microdevices; 2007 Apr; 9(2):215-21. PubMed ID: 17165126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing for chaos: applications of chaotic advection at the microscale.
    Stremler MA; Haselton FR; Aref H
    Philos Trans A Math Phys Eng Sci; 2004 May; 362(1818):1019-36. PubMed ID: 15306482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice.
    Kale A; Song L; Lu X; Yu L; Hu G; Xuan X
    Electrophoresis; 2018 Mar; 39(5-6):887-896. PubMed ID: 29068080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel.
    Huang MZ; Yang RJ; Tai CH; Tsai CH; Fu LM
    Biomed Microdevices; 2006 Dec; 8(4):309-15. PubMed ID: 17003961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible online in-droplet cell/synthetic particle concentration utilizing alternating current electrothermal-flow field-effect transistor.
    Sun H; Ren Y; Tao Y; Jiang T; Jiang H
    Lab Chip; 2021 May; 21(10):1987-1997. PubMed ID: 34008589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid circular microfluidic mixer utilizing unbalanced driving force.
    Lin CH; Tsai CH; Pan CW; Fu LM
    Biomed Microdevices; 2007 Feb; 9(1):43-50. PubMed ID: 17106640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrothermal flow on electrodes arrays at physiological conductivities.
    Koklu A; Tansel O; Oksuzoglu H; Sabuncu AC
    IET Nanobiotechnol; 2016 Apr; 10(2):54-61. PubMed ID: 27074854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrowetting-based droplet mixers for microfluidic systems.
    Paik P; Pamula VK; Pollack MG; Fair RB
    Lab Chip; 2003 Feb; 3(1):28-33. PubMed ID: 15100802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid Microfluidic Mixer Based on Ferrofluid and Integrated Microscale NdFeB-PDMS Magnet.
    Zhou R; Surendran AN; Mejulu M; Lin Y
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31881667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of pumping mechanism for non-Newtonian blood flow with AC electrothermal forces in a microchannel by hybrid boundary element method and immersed boundary-lattice Boltzmann method.
    Ren Q
    Electrophoresis; 2018 Jun; 39(11):1329-1338. PubMed ID: 29427440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microfluidic mixer with grooves placed on the top and bottom of the channel.
    Howell PB; Mott DR; Fertig S; Kaplan CR; Golden JP; Oran ES; Ligler FS
    Lab Chip; 2005 May; 5(5):524-30. PubMed ID: 15856089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A flexible layout design method for passive micromixers.
    Deng Y; Liu Z; Zhang P; Liu Y; Gao Q; Wu Y
    Biomed Microdevices; 2012 Oct; 14(5):929-45. PubMed ID: 22736305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.