BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28873250)

  • 1. Nanolattices: An Emerging Class of Mechanical Metamaterials.
    Bauer J; Meza LR; Schaedler TA; Schwaiger R; Zheng X; Valdevit L
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28873250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, Fabrication, and Mechanics of 3D Micro-/Nanolattices.
    Zhang X; Wang Y; Ding B; Li X
    Small; 2020 Apr; 16(15):e1902842. PubMed ID: 31483576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity.
    Cheng H; Zhu X; Cheng X; Cai P; Liu J; Yao H; Zhang L; Duan J
    Nat Commun; 2023 Mar; 14(1):1243. PubMed ID: 36871035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional High-Entropy Alloy-Polymer Composite Nanolattices That Overcome the Strength-Recoverability Trade-off.
    Zhang X; Yao J; Liu B; Yan J; Lu L; Li Y; Gao H; Li X
    Nano Lett; 2018 Jul; 18(7):4247-4256. PubMed ID: 29901403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving the theoretical limit of strength in shell-based carbon nanolattices.
    Wang Y; Zhang X; Li Z; Gao H; Li X
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2119536119. PubMed ID: 35969756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth.
    Maggi A; Li H; Greer JR
    Acta Biomater; 2017 Nov; 63():294-305. PubMed ID: 28923538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design Parameters for Subwavelength Transparent Conductive Nanolattices.
    Diaz Leon JJ; Feigenbaum E; Kobayashi NP; Han TY; Hiszpanski AM
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35360-35367. PubMed ID: 28960951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultralow Thermal Conductivity and Mechanical Resilience of Architected Nanolattices.
    Dou NG; Jagt RA; Portela CM; Greer JR; Minnich AJ
    Nano Lett; 2018 Aug; 18(8):4755-4761. PubMed ID: 30022671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Centimetre-scale crack-free self-assembly for ultra-high tensile strength metallic nanolattices.
    Jiang Z; Pikul JH
    Nat Mater; 2021 Nov; 20(11):1512-1518. PubMed ID: 34140654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoarchitected metal/ceramic interpenetrating phase composites.
    Bauer J; Sala-Casanovas M; Amiri M; Valdevit L
    Sci Adv; 2022 Aug; 8(33):eabo3080. PubMed ID: 35977008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resilient 3D hierarchical architected metamaterials.
    Meza LR; Zelhofer AJ; Clarke N; Mateos AJ; Kochmann DM; Greer JR
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11502-7. PubMed ID: 26330605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanolatticed Architecture Mitigates Damage in Shark Egg Cases.
    Goh R; Danielsen SPO; Schaible E; McMeeking RM; Waite JH
    Nano Lett; 2021 Oct; 21(19):8080-8085. PubMed ID: 34585939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures.
    Guell Izard A; Bauer J; Crook C; Turlo V; Valdevit L
    Small; 2019 Nov; 15(45):e1903834. PubMed ID: 31531942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Performance of Copper-Nanocluster-Polymer Nanolattices.
    Tang J; Liang H; Ren A; Ma L; Hao W; Yao Y; Zheng L; Li H; Li Q
    Adv Mater; 2024 Jun; 36(26):e2400080. PubMed ID: 38553432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaching theoretical strength in glassy carbonĀ nanolattices.
    Bauer J; Schroer A; Schwaiger R; Kraft O
    Nat Mater; 2016 Apr; 15(4):438-43. PubMed ID: 26828314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of Hierarchical Metal-Organic Framework as Ultralight, High-Strength Mechanical Metamaterials.
    Xing Y; Luo L; Li Y; Wang D; Hu D; Li T; Zhang H
    J Am Chem Soc; 2022 Mar; 144(10):4393-4402. PubMed ID: 35230831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plate-nanolattices at the theoretical limit of stiffness and strength.
    Crook C; Bauer J; Guell Izard A; Santos de Oliveira C; Martins de Souza E Silva J; Berger JB; Valdevit L
    Nat Commun; 2020 Mar; 11(1):1579. PubMed ID: 32221283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enabling Durable Ultralow-k Capacitors with Enhanced Breakdown Strength in Density-Variant Nanolattices.
    Kim MW; Lifson ML; Gallivan R; Greer JR; Kim BJ
    Adv Mater; 2023 Feb; 35(6):e2208409. PubMed ID: 36380720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly-stretchable 3D-architected Mechanical Metamaterials.
    Jiang Y; Wang Q
    Sci Rep; 2016 Sep; 6():34147. PubMed ID: 27667638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices.
    Meza LR; Das S; Greer JR
    Science; 2014 Sep; 345(6202):1322-6. PubMed ID: 25214624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.